822 resultados para CONSERVATION TILLAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with > 50% probability of occurrence) and conservation values (O/E taxa with < 50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given escalating concern worldwide about the loss of biodiversity, and given biodiversity's centrality to quality of life, it is imperative that current ecological knowledge fully informs societal decision making. Over the past two decades, ecological science has undergone many significant shifts in emphasis and perspective, which have important implications for how we manage ecosystems and species. In particular, a shift has occurred from the equilibrium paradigm to one that recognizes the dynamic, non-equilibrium nature of ecosystems. Revised thinking about the spatial and temporal dynamics of ecological systems has important implications for management. Thus, it is of growing concern to ecologists and others that these recent developments have not been translated into information useful to managers and policy makers. Many conservation policies and plans are still based on equilibrium assumptions. A fundamental difficulty with integrating current ecological thinking into biodiversity policy and management planning is that field observations have yet to provide compelling evidence for many of the relationships suggested by non-equilibrium ecology. Yet despite this scientific uncertainty, management and policy decisions must still be made. This paper was motivated by the need for considered scientific debate on the significance of current ideas in theoretical ecology for biodiversity conservation. This paper aims to provide a platform for such discussion by presenting a critical synthesis of recent ecological literature that (1) identifies core issues in ecological theory, and (2) explores the implications of current ecological thinking for biodiversity conservation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: