909 resultados para CONNECTIVITY OPERATORS
Resumo:
Background: New ways of representing diffusion data emerged recently and achieved to create structural connectivitymaps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. In this Pathology where multiple lines of evidence suggest the association of the pathology with abnormalities in neural circuitry and impaired structural connectivity, the diffusion imaging has been widely applied. Despite the large findings, most of the research using the diffusion just uses some scalar map derived from diffusion to show that some markers of white matter integrity are diminished in several areas of the brain (Kyriakopoulos M et al (2008)). Thanks to the structural connectionmatrix constructed by the whole brain tractography, we report in this work the network connectivity alterations in the schizophrenic patients. Methods: We investigated 13 schizophrenic patients as assessed by the DIGS (Diagnostic Interview for genetic studies, DSM IV criteria) and 13 healthy controls. We have got from each volunteer a DT-MRI as well as Qball imaging dataset and a high resolution anatomic T1 performed during the same session; with a 3 T clinical MRI scanner. The controls were matched on age, gender, handedness, and parental social economic-status. For all the subjects, a low resolution connection matrix is obtained by dividing the cortex into 66 gyral based ROIs. A higher resolution matrix is constructed using 250 ROIs as described in Hagmann P et al. (2008). These ROIs are respectively used jointly with the diffusion tractography to construct the high and low resolution densities connection matrices for each subject. In a first step the matrices of the groups are compared in term of connectivity, and not in term of density to check if the pathological group shows a loss of global connectivity. In this context the density connection matrices were binarized. As some local connectivity changes were also suspected, especially in frontal and temporal areas, we have also looked for the areas where the connectivity showed significant changes. Results: The statistical analysis revealed a significant loss of global connectivity in the schizophrenic's brains at level 5%. Furthermore, by constructing specific statistics which represent local connectivity within the anatomical regions (66 ROIs) using the data obtained by the finest resolution (250 ROIs) to improve the robustness, we found the regions that cause this significant loss of connectivity. The significance is observed after multiple testing corrections by the False Discovery Rate. Discussion: The detected regions are almost the same as those reported in the literature as the involved regions in schizophrenia. Most of the connectivity decreases are noted in both hemispheres in the fronto-frontal and temporo-temporal regions as well as some temporal ROIs with their adjacent ROIs in parietal and occipital lobes.
Resumo:
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the nodes represents the anatomical ROIs and the edges are the connections between any pair of ROIs weighted by the mean GFA/FA values. A significant difference was found between the patient group vs control group in characteristic path length, clustering coefficient and small-worldness. This suggests that the MTLE network is less efficient compared to the network of the control group.
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
This paper extends the theory of network competition betweentelecommunications operators by allowing receivers to derive a surplusfrom receiving calls (call externality) and to affect the volume ofcommunications by hanging up (receiver sovereignty). We investigate theextent to which receiver charges can lead to an internalization of thecalling externality. When the receiver charge and the termination(access) charge are both regulated, there exists an e±cient equilibrium.Effciency requires a termination discount. When reception charges aremarket determined, it is optimal for each operator to set the prices foremission and reception at their off-net costs. For an appropriately chosentermination charge, the symmetric equilibrium is again effcient. Lastly,we show that network-based price discrimination creates strong incentivesfor connectivity breakdowns, even between equal networks.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Introduction: Schizophrenia is associated with multiple neuropsychological dysfunctions, such as disturbances of attention, memory, perceptual functioning, concept formation and executive processes. These cognitive functions are reported to depend on the integrity of the prefrontal and thalamo-prefrontal circuits. Multiple lines of evidence suggest that schizophrenia is related to abnormalities in neural circuitry and impaired structural connectivity. Here, we report a preliminary case-control study that showed a correlation between thalamo-frontal connections and several cognitive functions known to be impaired in schizophrenia. Materials and Methods: We investigated 9 schizophrenic patients (DSM IV criteria, Diagnostic Interview for Genetic Studies) and 9 age and sex matched control subjects. We obtained from each volunteer a DT-MRI dataset (3 T, _ _ 1,000 s/mm2), and a high resolution anatomic T1. The thalamo- frontal tracts are simulated with DTI tractography on these dataset, a method allowing inference of the main neural fiber tracks from Diffusion MRI data. In order to see an eventual correlation with the thalamo-frontal connections, every subject performs a battery of neuropsychological tests including computerized tests of attention (sustained attention, selective attention and reaction time), working memory tests (Plane test and the working memory sub-tests of the Wechsler Adult Intelligence Scale), a executive functioning task (Tower of Hanoï) and a test of visual binding abilities. Results: In a pilot case-control study (patients: n _ 9; controls: n _ 9), we showed that this methodology is appropriate and giving results in the excepted range. Considering the relation of the connectivity density and the neuropsychological data, a correlation between the number of thalamo- frontal fibers and the performance in the Tower of Hanoï was observed in the patients (Pearson correlation, r _ 0.76, p _ 0.05) but not in control subjects. In the most difficult item of the test, the least number of fibers corresponds to the worst performance of the test (fig. 2, number of supplementary movements of the elements necessary to realize the right configuration). It's interesting to note here that in an independent study, we showed that schizophrenia patients (n _ 32) perform in the most difficult item of the Tower of Hanoï (Mann-Whitney, p _ 0.005) significantly worse than control subjects (n _ 29). This has been observed in several others neuropsychological studies. Discussion: This pilot study of schizophrenia patients shows a correlation between the number of thalam-frontal fibers and the performance in the Tower of Hanoï, which is a planning and goal oriented actions task known to be associated with frontal dysfonction. This observation is consistent with the proposed impaired connectivity in schizophrenia. We aim to pursue the study with a larger sample in order to determine if other neuropsychological tests may be associated with the connectivity density.
Resumo:
The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate-EEG synchronization-in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18-24 Hz) and one in the gamma-band (30-40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices.