895 resultados para COMPLEX SEGREGATION ANALYSIS
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.
Resumo:
Cell division is a highly dynamic process where sister chromatids remain associated with each other from the moment of DNA replication until the later stages of mitosis, giving rise to two daughter cells with equal genomes. The “molecular glue” that links sister DNA molecules is called cohesin, a tripartite ring-like protein complex composed of two Structural Maintenance of Chromosome proteins (Smc1 and Smc3) bridged by a kleisin subunit Rad21/Scc1, that together prevent precocious sister chromatid separation. Accumulating evidence has suggested that cohesion decay may be the cause of segregation errors that underlie certain human pathologies. However it remains to be determined how much cohesin loss abolishes functional sister chromatid cohesion. To answer these questions, we have developed different experimental conditions aiming to titrate the levels of cohesin on mitotic chromosomes in a precise manner. Using these tools, we will determine the minimal amount of cohesin needed to confer functional cohesion. The approaches described here take advantage of a system in Drosophila melanogaster where the Tobacco Etch Virus (TEV) protease can cleave the Rad21 subunit of cohesin leading to precocious sister chromatid separation. Firstly, we tried to express different levels of TEV protease to obtain partial loss of cohesion. However, this approach has failed to produce systematic different levels of sister chromatid separation. Most of the work was therefore focused on a second strategy, for which we established strains with different levels of cohesin sensitive/cohesin resistant to TEV protease. Strains containing different amounts of functional cohesin (TEV resistant) were tested by in vitro cleavage and by in vivo injections in embryos for their ability to promote sister chromatid cohesion. Our results reveal that removal of half of the cohesin complexes does not impair chromosome segregation, implying that chromosome cohesion is less sensitive to cohesin amounts than previously anticipated.
Resumo:
Complex Microwave Structures Wake Field Computatation PETRA III Generalized Multipole Technique Antenna Antennen Wakefelder Berechnung
Resumo:
Surface- or biosynthetically labeled Lyt-2/3 antigens were isolated from cell lysates by immunoprecipitation and affinity chromatography with a monoclonal antibody. Tryptic digests of the individual subunits of 37,000, 32,000 and 28,000 apparent mol. wts were analysed by reverse-phase high-performance liquid chromatography and by two-dimensional peptide mapping. The results indicate that the 37,000 and 32,000 mol. wt components are structurally very similar whereas the 28,000 mol. wt component appears as a different molecule.
Resumo:
The purpose of this study was to assess the distribution of Mycobacterium avium serovars isolated from AIDS patients in São Paulo and Rio de Janeiro. Ninety single site or multiple site isolates from 75 patients were examined. The most frequent serovars found were 8 (39.2%), 4 (21.4%) and 1 (10.7%). The frequency of mixed infections with serovar 8 or 4 was 37.8%. Among the 90 strains examined, M. intracellulare serovars (7 strains) and M. scrofulaceum (4 strains) were found in 11 isolates (12%) indicating that M. avium (88%) was the major opportunistic species in the M. avium complex isolates in Brazilian AIDS patients
Resumo:
The first and second internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis) were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Resumo:
Some sites of extrapulmonary tuberculosis and focal complications of brucellosis are very difficult to differentiate clinically, radiologically, and even histopathologically. Conventional microbiological methods for the diagnosis of extrapulmonary tuberculosis and complicated brucellosis not only lack adequate sensitivity, they are also time consuming, which could lead to an unfavourable prognosis. The aim of this work was to develop a multiplex real-time PCR assay based on SYBR Green I to simultaneously detect Brucella spp and Mycobacterium tuberculosis complex and evaluate the efficacy of the technique with different candidate genes. The IS711, bcsp31 and omp2a genes were used for the identification of Brucella spp and the IS6110, senX3-regX3 and cfp31 genes were targeted for the detection of the M. tuberculosis complex. As a result of the different combinations of primers, nine different reactions were evaluated. A test was defined as positive only when the gene combinations were capable of co-amplifying both pathogens in a single reaction tube and showed distinguishable melting temperatures for each microorganism. According to the melting analysis, only three combinations of amplicons (senX3-regX3+bcsp31, senX3-regX3+IS711 and IS6110+IS711) were visible. Detection limits of senX3-regX3+bcsp31 and senX3-regX3+IS711 were of 2 and 3 genome equivalents for M. tuberculosis complex and Brucella while for IS6110+IS711 they were of 200 and 300 genome equivalents, respectively. The three assays correctly identified all the samples, showing negative results for the control patients. The presence of multicopy elements and GC content were the components most influencing the efficiency of the test; this should be taken into account when designing a multiplex-based SYBR Green I assay. In conclusion, multiplex real time PCR assays based on the targets senX3-regX3+bcsp31 and senX3-regX3+IS711 using SYBR Green I are highly sensitive and reproducible. This may therefore be a practical approach for the rapid differential diagnosis between extrapulmonary tuberculosis and complicated brucellosis.
Resumo:
Isolates of the Trichophyton mentagrophytes complex vary phenotypically. Whether the closely related zoophilic and anthropophilic anamorphs currently associated with Arthroderma vanbreuseghemii have to be considered as members of the same biological species remains an open question. In order to better delineate species in the T. mentagrophytes complex, we performed a mating analysis of freshly collected isolates from humans and animals with A. benhamiae and A. vanbreuseghemii reference strains, in comparison to internal transcribed spacer (ITS) and 28S rDNA sequencing. Mating experiments as well as ITS and 28S sequencing unambiguously allowed the distinction of A. benhamiae and A. vanbreuseghemii. We have also shown that all the isolates from tinea pedis and tinea unguium identified as T. interdigitale based on ITS sequences mated with A. vanbreuseghemii tester strains, but had lost their ability to give fertile cleistothecia. Therefore, T. interdigitale has to be considered as a humanized species derived from the sexual relative A. vanbreuseghemii.
Resumo:
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download
Resumo:
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.