967 resultados para COMPENSATION
Resumo:
In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.
Resumo:
Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes
Resumo:
Perceptual compensation for reverberation was measured by embedding test words in contexts that were either spoken phrases or processed versions of this speech. The processing gave steady-spectrum contexts with no changes in the shape of the short-term spectral envelope over time, but with fluctuations in the temporal envelope. Test words were from a continuum between "sir" and "stir." When the amount of reverberation in test words was increased, to a level above the amount in the context, they sounded more like "sir." However, when the amount of reverberation in the context was also increased, to the level present in the test word, there was perceptual compensation in some conditions so that test words sounded more like "stir" again. Experiments here found compensation with speech contexts and with some steady-spectrum contexts, indicating that fluctuations in the context's temporal envelope can be sufficient for compensation. Other results suggest that the effectiveness of speech contexts is partly due to the narrow-band "frequency-channels" of the auditory periphery, where temporal-envelope fluctuations can be more pronounced than they are in the sound's broadband temporal envelope. Further results indicate that for compensation to influence speech, the context needs to be in a broad range of frequency channels. (c) 2007 Acoustical Society of America.
Resumo:
Perceptual effects of room reverberation on a "sir" or "stir" test-word can be observed when the level of reverberation in the word is increased, while the reverberation in a surrounding 'context I utterance remains at a minimal level. The result is that listeners make more "sit" identifications. When the context's reverberation is also increased, to approach the level in the test word, extrinsic perceptual compensation is observed, so that the number of listeners' "sir" identifications reduces to a value similar to that found with minimal reverberation. Thus far, compensation effects have only been observed with speech or speech-like contexts in which the short-term spectrum changes as the speaker's articulators move. The results reported here show that some noise contexts with static short-term spectra can also give rise to compensation. From these experiments it would appear that compensation requires a context with a temporal envelope that fluctuates to some extent, so that parts of it resemble offsets. These findings are consistent with a rather general kind of perceptual compensation mechanism; one that is informed by the 'tails' that reverberation adds at offsets. Other results reported here show that narrow-band contexts do not bring about compensation, even when their temporal-envelopes are the same as those of the more effective wideband contexts. These results suggest that compensation is confined to the frequency range occupied by the context, and that in a wideband sound it might operate in a 'band by band' manner.