946 resultados para COLONY SPLITTING
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.
Resumo:
Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.
Resumo:
We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.
Resumo:
The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
A thermodynamic model of the evolution of microcracks in silicon caused by helium and hydrogen co-implantation during annealing was studied. The crack growth rate relies on the amount of helium atoms and hydrogen molecules present. Here, the crack radius was studied as a function of annealing time and temperature, and compared with experimental results. The mean crack radius was found to be proportional to the annealing temperature and the helium and hydrogen implanted fluence. The gas desorption should be considered during annealing process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The interaction between standard heparin, low-molecular-weight heparin (LMWH), and granulocyte-colony stimulating factor (G-CSF) was studied by capillary zone electrophoresis. Both qualitative and quantitative characterizations of the heparin-protein binding were determined. The binding constants of the two different groups of heparins with G-CSF, calculated from the Scatchard plot by regression, were 4.805 x 10(5) m(-1) and 4.579 x 10(5) m(-1), respectively. The two binding constants measured are of the same order of magnitude at 10(5) m(-1), indicating that LMWH contains most of the functional groups bound to G-CSF by standard heparin.
Resumo:
We report for the first time the proper conditions to observe Autler-Townes splitting (ac-Stark splitting) from vibrationally coherent states belonging to the different electronic terms of a diatomic molecule. Wave packet dynamics simulations demonstrate that such a process is feasible by multiphoton resonance ionization of the molecule Na-2 with a single ultrashort intense laser pulse. With the ultrahigh time resolution of a femtosecond laser pulse, one can directly measure the absolute value of the transition dipole moment between any kinds of molecular states by this kind of Autler-Townes splitting, which is a function of the internuclear distance R.
Resumo:
The crystal field splitting of 5d level of EU2+ and Ce3+ in halide crystals has been studied. Our results indicate that the 10Dq splitting can be directly related to the homopolar part of average energy gap, the coordination number of central (doped) ion, the charge of neighboring anions and bond ionicity between central ion to nearest anions. A relation between the 10Dq splitting and the above mentioned factors is presented. Our calculated results are in reasonable agreement with diverse experiments.
Resumo:
In terms of the theory of chemical bonds on complex crystals(CBCC), the crystal structure and coordination, the chemical bond parameters of a group of ABO(4)-type crystals were calculated in detail, The results show that the relation between the crystal field splitting of Nd3+ ion and the covalency of the crystal is linear.
Resumo:
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate/kappa-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2x10(6) (mol/L)(-1) and 3:1, respectively. However, the interaction between K-carrageenan oligosaccharide and G-CSF was not found.