312 resultados para CHEMOTAXIS
Resumo:
Current nuclear medicine techniques for the localization of inflammatory processes are based on injection of 111In labelled autologous granulocytes which need to be isolated and radiolabelled in vitro before reinjection. A new technique is presented here that obviates the need for cell isolation by the direct intravenous injection of a granulocyte specific 123I labelled monoclonal antibody. In this publication the basic parameters of the antibody granulocyte interaction are described. Antibody binding does not inhibit vital functions of the granulocytes, such as chemotaxis and superoxide generation. Scatchard analysis of binding data reveals an apparent affinity of the antibody for granulocytes of 6.8 X 10(9) l/mol and approximately 7.1 X 10(4) binding sites per cell. Due to the high specificity of the antibody, the only expected interference is from CEA producing tumors.
Resumo:
Accumulation of neutr ophils releasing proteolytic enzymes and free radicals induceprogressive lung tissue destruction in CF. Among several hfflammatory mediatorsimplicated in this process, leukotriene B 4 (LTB4) product of arachidonic (AA;20:4n 6) omega 6 polytmsaturated fatty acid (PUFA) plays an important role.Various anti inflammatory strategies including dietary supplementation of omega 3PUFA, known to favor the synthesis of less active leukotriene B 5 (LTBs), have beeninvestigated. To further explore this nutritional approach, biological effects of anomega 3 PUFA oral supplementation (n 3 OS) were measured in 17 CF patients haa prospective, randomized, double blind, crossover study. CF patients (mean age:18 + 9 years, FEVI: 66 + 29 %) received a dietary supplementation enriched, or not,ha omega 3 PUFA during a 2 x 6 months period. A modification in neutrophilmembrane PUFA composition was observed under n 3 OS with an increase in EPA(20:5n 3) PUFA (from 0.66 ± 0.56 to 1.60 ± 0.61 ~tmol %, P< 0.01). The LTB jLTB 5ratio was decreased (from 72 + 27 to 24 + 7, P< 0.C~31), in CF patients taking n 3OS. However, n 3 OS supplementation did neither affect the internalization of bothIL 8 receptors following IL 8 exposure, nor IL 8 induced neutrophil chemotaxis.Our results show that n 3 PUFA are absorbed and incorporated in neutrophilmembrmae. The consecutive decrease ha LTBjLTB 5 ratio suggests that, ha theseconditions, neutr ophils may produce less toxic mediators from the AA pathway. Thepotential clinical benefit for CF patients still needs to be assessed with furtherstudies of longer duration and including more patients.
Resumo:
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.
Resumo:
Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6(-/-) mice received allogeneic non-T cell-depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6(-/-) recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6(-/-) recipients' liver. When mice received 0.5 x 10(6) allogeneic T cells with T cell-depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6(-/-) than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6(-/-) T-cell proliferation. We therefore assessed the response of WT or Gas6(-/-) ECs to tumor necrosis factor-alpha. Lymphocyte transmigration was less extensive through Gas6(-/-) than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.
Resumo:
Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.
Resumo:
After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.
Resumo:
The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.
Resumo:
Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Resumo:
Résumé: Le neuroblastome (NB) est un néoplasme dévastateur de la petite enfance, pour lequel il n'existe pas encore de traitement efficace. Les chimiokines et leurs récepteurs ont été impliqués dans la croissance des tumeurs et la formation de métastases, et en particulier, il a été rapporté que l'axe CXCR4/CXCL12 dirigeait le guidage, ainsi que l'invasion des cellules cancéreuses vers des organes spécifiques. Notre étude avait pour objectif d'analyser le rôle de CxCR4 exogène dans le comportement malin du NB, en étudiant la croissance des cellules tumorales, leur capacité de survie, de migration et d'invasion in vitro et en validant ces résultats grâce à un modèle orthotopique murin de la progression tumorale du NB in vivo. La surexpression de CXCR4 dans les cellules faiblement métastatiques IGR-NB8 n'exprimant pas CXCR4, a augmenté la mobilité des cellules vers CXCL12 in vitro. De plus, les cellules surexprimant CXCR4 ont été moins affectées par la privation de sérum que les cellules contrôles. Le volume des tumeurs chez les animaux greffés de manière orthotopique avec les cellules NB8-CXCR4-C3 était significativement plus élevé que celui des tumeurs issues des cellules contrôles NB8-E6 au moment du sacrifice des animaux. Cependant, aucune induction des métastases n'a été observée. La lignée cellulaire IGR-N91, aux propriétés invasives et métastatiques in vivo, exprime constitutivement des quantités modérées de CXCR4. La surexpression du récepteur dans cette lignée a accéléré la croissance tumorale in vivo, mais n'a pas augmenté pas l'occurrence des métastases. Les cellules IGR-N91, dans lesquelles l'expression de CXCR4 a été éteinte, suite à l'introduction de shRNA stable contre CXCR4, a présenté une croissance cellulaire plus lente, in vitro et in vivo. Afin d'identifier les gènes et les voies de signalisation impliqués dans les effets dépendants de CXCR4-CXCL12 dans le NB, des analyses du profil d'expression des gènes ont été effectuées sur les lignées cellulaires transfectées ou non (contrôle). Trois clones contrôles ont été comparés à 3 clones surexprimant CXCR4 pour chacune des lignées (IGR-NB8 et IGR-N91). Les analyses biostatiques ont identifié 10 gènes induits, dont CXCR4, et 31 gènes réprimés, communs entre tous les clones surexprimant CXCR4. Ces observations démontrent que la surexpression de CXCR4 dans le NB stimule la croissance, la survie et la migration chémotactique des cellules tumorales, mais est insuffisante pour induire ou augmenter leurs capacités invasives et métastatiques. Les voies de signalisation activées suite à la surexpression de CXCR4 et identifiées à travers le profil global de l'expression des gènes pourraient être des cibles intéressantes pour le développement de drogues capables d'inhiber la croissance tumorale. Abstact: Neuroblastoma (NB) is a devastating childhood neoplasm for which there is not yet an efficient treatment. Chemokines and their receptors have been involved in tumour growth and metastasis, and in particular the CXCR4/CXCL12 axis has been reported to mediate organ-specific cancer cells homing and invasion. The purpose of the study was to investigate the role of ectopic CXCR4 in the malignant behaviour of NB by studying tumour cell growth, survival, migration, and invasion in vitro and by validating these results using a murine orthotopic model of NB tumour progression in vivo. CXCR4 overexpression in the low metastatic, CXCR4-negative IGR-NB8 cells resulted in CXCL12-mediated chemotaxis in vitro. Furthermore, CXCR4 overexpressing cells were less affected by serum deprivation than mock-transduced cells. In vivo studies revealed that, at sacrifice, volumes of tumours developing in mice with orthotopically implanted NB8-CXCR4-C3 cells, were significantly increased compared to NB8-E6 control tumours. However, no induction of metastases was observed. The in vivo invasive and metastatic cell line IGR-N91 cell line constitutively expresses moderate levels of CXCR4. Overexpression of CXCR4 enhanced in vivo tumour growth but did not increase the occurrence of metastases. IGR-N91 cells where CXCR4 has been knocked-down by stable shRNA grew slower in vitro and in vivo. To identify genes and pathways involved in the CXCR4/CXCL12-mediated effects in NB expression, profiles analyses (Affymetrix) were performed on transduced and control cell lines. Three mock-transduced clones were compared to three CXCR4 overexpressing clones of either cell line IGR-NB8 and IGR-N91. Biostatistical analysis identified 10 commonly upregulated genes (including CXCR4) and 31 downregulated genes common to all CXCR4 overexpressing clones. These observations demonstrate that overexpression of CXCR4 in NB stimulates tumour cell growth, survival, and chemotactic migration but is not sufficient to induce or enhance invasive and metastatic capacities. Activated pathways upon CXCR4 overexpression, identified through global gene expression profiling may be interesting targets for drugs inhibiting tumour growth.
Resumo:
The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp0) and/or DksA ( dksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksAdeficient strains, respectively, increasing to 13% of all genes in the ppGpp0 dksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.
Resumo:
The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp0) and/or DksA ( dksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksAdeficient strains, respectively, increasing to 13% of all genes in the ppGpp0 dksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.
Resumo:
Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.