999 resultados para CERIUM MONOCHALCOGENIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pure and cerium doped sodium bismuth titanate inorganic powders were synthesized by solid state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. At 1200 ºC, the 5% of cerium doped NBT compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated to 1350 ºC, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermo gravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work we present our recent results on the synthesis and characterization of Ce doped sodium bismuth titanate materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The active phase Ce0.5Pr0.5O2 has been loaded on commercial substrates (SiC DPF and cordierite honeycomb monolith) to perform DPF regeneration experiments in the exhaust of a diesel engine. Also, a powder sample has been prepared to carry out soot combustion experiments at laboratory. Experiments performed in the real diesel exhaust demonstrated the catalytic activity of the Ce–Pr mixed oxide for the combustion of soot, lowering the DPF regeneration temperature with regard to a counterpart catalyst-free DPF. The temperature for active regeneration of the Ce0.5Pr0.5O2-containing DPF when the soot content is low is in the range of 500–550 °C. When the Ce0.5Pr0.5O2-containing DPF is saturated with a high amount of soot, pressure drop and soot load at the filter reach equilibrium at around 360 °C under steady state engine operation due to passive regeneration. The uncoated DPF reached this equilibrium at around 440 °C. Comparing results at real exhaust with those at laboratory allow concluding that the Ce0.5Pr0.5O2-catalysed soot combustion in the real exhaust is not based on the NO2-assisted mechanism but is most likely occurring by the active oxygen-based mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline cerium hydroxysulfate powders have been prepared by soft solution processing using various basic solvents. The crystals prepared have varying morphologies, spherical and flaky, depending on the solvent used. The crystals obtained from distilled water-pyridine and aqueous ammonia solvent mixtures are spherical, whereas those obtained from mixtures of distilled water and ethylenediamine or hydrazine hydrate are flaky. All the crystalline cerium hydroxysulfate samples display luminescence properties. It was found that the flaky crystals generally show a much stronger luminescence than their spherical counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction was used to measure the total structure factors for several rare-earth ion R3+ (La3+ or Ce3+) phosphate glasses with composition close to RAl0.35P3.24O10.12. By assuming isomorphic structures, difference function methods were employed to separate, essentially, those correlations involving R3+ from the remainder. A self-consistent model of the glass structure was thereby developed in which the Al correlations were taken into explicit account. The glass network was found to be made from interlinked PO4 tetrahedra having 2.2(1) terminal oxygen atoms, OT, at 1.51(1) Angstrom, and 1.8(1) bridging oxygen atoms, OB, at 1.60(1) Angstrom. Rare-earth cations bonded to an average of 7.5(2) OT nearest neighbors in a broad and asymmetric distribution. The Al3+ ion acted as a network modifier and formed OT-A1-OT linkages that helped strengthen the glass. The connectivity of the R-centered coordination polyhedra was quantified in terms of a parameter f(s) and used to develop a model for the dependence on composition of the A1-OT coordination number in R-A1-P-O glasses. By using recent 17 A1 nuclear-magnetic-resonance data, it was shown that this connectivity decreases monotonically with increasing Al content. The chemical durability of the glasses appeared to be at a maximum when the connectivity of the R-centered coordination polyhedra was at a minimum. The relation of f(s) to the glass transition temperature, Tg, was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenous manganese nodules form on the ocean floor by slow authigenic precipitation (1-6 mm/Ma) of the oxyhydroxides of manganese and iron that continuously scavenge trace elements from the marine environment. Consequently, these nodules represent independent marine deposits useful for the study of the chemical signatures of the paleomarine environments. The results presented are a continuation of a study of the Zetes-3D nodule from the Pacific Ocean. It is a large (24x17x10 cm) hydrogenous nodule whose slow growth rate of 1.3 mm/Ma was detremined using 10Be techniques. A positive cerium anomaly is observed throughout the nodule and its Ir content indicates a sharp spike at 54-62 Ma in fair agreement with the K-T event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prospective impact of nanomaterials in science and technology has followed an increasing trend due to their unique chemical and physical properties compared to bulk. Significant advances in current technologies in areas such as clean energy production, electronics, medicine, and environment have fuelled major research and development efforts in nanotechnology around the world. This leads to the opportunity to use such nanostructured materials in novel applications and devices. Ceria, zirconia, alumina and titania are some of the major oxides which find vast applications as a nanomaterial on a wider side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decades the growing application of nanomaterials (NMs) in diverse consumer products has raised various concerns in the field of toxicology. They have been extensively used in a broad range of applications and cover most of the industrial sectors as well as the medicine and the environmental areas. The most common scenarios for human exposure to NMs are occupational, environmental and as consumers and inhalation is the most frequent route of exposure, especially in occupational settings. Cerium dioxide NMs (nano-CeO2) are widely used in a number of applications such as in cosmetics, outdoor paints, wood care products as well as fuel catalysts. For such reason, nano-CeO2 is one of the selected NMs for priority testing within the sponsorship program of the Working Party of Manufactured Nanomaterials of the OECD. In this context, the aim of this study is to assess the safety of nano-CeO2 (NM-212, Joint Research Center Repository) through the characterization of its cytotoxicity and genotoxicity in a human alveolar epithelial cell line. A dispersion of the NM in water plus 0.05% BSA was prepared and sonicated during 16 minutes, according to a standardized protocol. DLS analysis was used to characterize the quality of the NM dispersion in the culture medium. To evaluate the cytotoxicity of nano-CeO2 in the A549 cell line, the colorimetric MTT assay was performed; the capacity of cells to proliferate when exposed to CeO2 was also assessed with the Clonogenic assay. The genotoxicity of this NM was evaluated by the Comet Assay (3 and 24h of exposure) to quantify DNA breaks and the FPG-modified comet assay to assess oxidative DNA damage. The Cytokinesis-Block Micronucleus (CBMN) assay was used to further detect chromosome breaks or loss. The nano-CeO2 particles are spherical, displaying a diameter of 33 nm and 28 m2/g of surface area. The results of the MTT assay did not show any decreased in cells viability following treatment with a dose-range of nano-CeO2 during 24h. Nevertheless, the highest concentrations of this NM were able to significantly reduce the colony forming ability of A549 cells, suggesting that a prolonged exposure may be cytotoxic to these cells. Data from both genotoxicity assays revealed that nano-CeO2 was neither able to induce DNA breaks nor oxidative DNA damage. Likewise, no significant micronucleus induction was observed. Taken together, the present results indicate that this nano-CeO2 is not genotoxic in this alveolar cell line under the tested conditions, although further studies should be performed, e.g., gene mutation in somatic cells and in vivo chromosome damage (rodent micronucleus assay) to ensure its safety to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increase in use of nanoparticles (NPs) in day to day products, these particles eventually enter the wastewater treatment plant and get removed from the effluent while getting accumulated in the sludge at ever increasing concentrations. These NPs have a potential for causing inhibition in sludge digestion processes. Therefore, this research focused on the effects of cerium (IV) oxide (CeO2) and zinc oxide (ZnO) NPs on biogas production from sludge. The inhibition effects were investigated by studying toxicity of the said NPs on Escherichia coli. The results showed that CeO2 and ZnO NPs showed some degree of inhibition in biogas production with 65.3% biogas reduction at ZnO NPs at 1000 mg/L concentration. Conversely, CeO2 at low concentration of 10 mg/L lead to an increase biogas generation by 11%. The tolerable exposure concentrations for ZnO were determined to be 100 and 500 mg/L, where the system could overcome the inhibition effect after 14 days of incubation. The bacterial toxicity test showed that both nanoparticles were toxic for bacteria leading to biogas reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).