972 resultados para CB-HRP
Resumo:
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1−xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.
Resumo:
The theory, design, and performance of a solid electrolyte twin thermocell for the direct determination of the partial molar entropy of oxygen in a single-phase or multiphase mixture are described. The difference between the Seebeck coefficients of the concentric thermocells is directly related to the difference in the partial molar entropy of oxygen in the electrodes of each thermocell. The measured potentials are sensitive to small deviations from equilibrium at the electrodes. Small electric disturbances caused by simultaneous potential measurements or oxygen fluxes caused by large oxygen potential gradients between the electrodes also disturb the thermoelectric potential. An accuracy of ±0.5 calth K−1 mol−1 has been obtained by this method for the entropies of formation of NiO and NiAl2O4. This “entropy meter” may be used for the measurement of the entropies of formation of simple or complex oxides with significant residual contributions which cannot be detected by heat-capacity measurements.
Resumo:
The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
The Gibbs energy of mixing for the system Fe3O4-FeAl2O4 was determined at 1573 K using a gas-metal-oxide equilibration technique. Oxide solid solution samples were equilibrated with Pt foils under controlled CO+CO2 gas streams. The equilibrium iron concentration in the foil was determined by chemical analysis. The cation distribution between tetrahedral and octahedral sites in the spinel crystal can be calculated from site-preference energies and used as an alternate method of determining some thermodynamic properties, including the Gibbs energy of mixing. The solvus occurring at low temperatures in the system Fe3C4-FeAl2C4 was used to derive the effect of lattice distortion due to cation size difference on the enthalpy of mixing and to obtain a better approximation to the measured thermodynamic quantities.
Resumo:
Hydrogenperoxide (H2O2) is generated in mitochondria in aerobic cells as a minor product of electron transport, is inhibited selectively by phenolic acids (in animals) or salicylhydroxamate (in plants) and is regulated by hormones and environmental conditions. Failure to detect this activity is due to presence of H2O2-consuming reactions or inhibitors present in the reaction mixture. H2O2 has a role in metabolic regulation and signal transduction reactions. A number of enzymes and cellular activities are modified, mostly by oxidizing the protein-thiol groups, on adding H2O2 in mM concentrations. On complexing with vanadate, also occurring in traces, H2O2 forms diperoxovanadate (DPV), stable at physiological pH and resistant to degradation by catalase. DPV was found to substitute for H2O2 at concentrations orders of magnitude lower, and in presence of catalase, as a substrate for user reaction, horseradish peroxidase (HRP), and in inactivating glyceraldehyde-3-phosphate dehydrogenase. superoxide dismutase (SOD)-sensitive oxidation of NADH was found to operate as peroxovanadate cycle using traces of DPV and decameric vanadate (V-10) and reduces O-2 to peroxide (DPV in presence of free vanadate). This offers a model for respiratory burst. Diperoxovanadate reproduces several actions of H2O2 at low concentrations: enhances protein tyrosine phosphorylation, activates phospholipase D, produces smooth muscle contraction, and accelerates stress induced premature senescence (SIPS) and rounding in fibroblasts. Peroxovanadates can be useful tools in the studies on H2O2 in cellular activities and regulation.
Resumo:
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the alpha-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.
Resumo:
Conducting polymer microstructures for enzymatic biosensors are developed by a facile electrochemical route. Horseradish peroxide (HRP)-entrapped polypyrrole (PPy) films with bowl-shaped microstructures are developed on stainless steel (SS 304) substrates by a single-step process. Potentiodynamic scanning/cyclic voltammetry is used for generation of PPy microstructures using electrogenerated oxygen bubbles stabilized by zwitterionic surfactant/buffer N-2-hydroxyethylpiperazine N-2-ethanesulfonic acid as soft templates. Scanning electron microscopic images reveal the bowl-shaped structures surrounded by cauliflower-like fractal PPy films and globular nanostructures. Raman spectroscopy reveals the oxidized nature of the film. Sensing properties of PPy-HRP films for hydrogen peroxide (H2O2) are demonstrated. Electrochemical characterization of the sensor films is done by linear sweep voltammetry (LSV) and amperometry. LSV results indicated the reduction of H2O2 and linearity in response of the sensing film. The amperometric biosensor has a performance comparable to those in the literature with advantages of hard-template free synthesis procedure and a satisfactory sensitivity value of 12.8 mu A/(cm(2) . mM) in the range of 1-10 mM H2O2.
Resumo:
A simple, mild, and cost effective methodology has been developed for the synthesis of aryl thio-and selenoglycosides from glycosyl halides and diaryl dichalcogenides. Diaryl dichalcogenides undergo reductive cleavage in the presence of rongalite (HOCH2SO2Na) to generate a chalcogenide anion in situ followed by reaction with glycosyl halides to furnish the corresponding aryl thio- and selenoglycosides in excellent yields. Using this protocol, synthesis of 4-methyl-7-thioumbelliferyl-beta-D-cellobioside (MUS-CB), a fluorescent non-hydrolyzable substrate analogue for cellulases has been achieved. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
An organic molecule-o-phenylene diamine (OPD)-is selected as an aldehyde sensing material. It is studied for selectivity to aldehyde vapours both by experiment and simulation. A chemiresistor based sensor for detection of aldehyde vapours is fabricated. An o-phenylene diamine-carbon black composite is used as the sensing element. The amine groups in the OPD would interact with the carbonyl groups of the aldehydes. The selectivity and cross-sensitivity of the OPD-CB sensor to VOCs aldehyde, ketone and alcohol-are studied. The sensor shows good response to aldehydes compared to other VOCs. The higher response for aldehydes is attributed to the interaction of the carbonyl oxygen of aldehydes with-NH2 groups of OPD. The surface morphology of the sensing element is studied by scanning electron microscopy. The OPD-CB sensor is responsive to 10 ppm of formaldehyde. The interaction of the VOCs with the OPD-CB nanocomposite is investigated by molecular dynamics studies. The interaction energies of the analyte with the OPD-CB nanocomposite were calculated. It is observed that the interaction energies for aldehydes are higher than those for other analytes. Thus the OPD-CB sensor shows selectivity to aldehydes. The simulated radial distribution function is calculated for the O-H pair of analyte and OPD which further supports the finding that the amine groups are involved in the interaction. These results suggest that it is important and easy to identify appropriate sensing materials based on the understanding of analyte interaction properties.
Resumo:
This paper proposes a novel decision making framework for optimal transmission switching satisfying the AC feasibility, stability and circuit breaker (CB) reliability requirements needed for practical implementation. The proposed framework can be employed as a corrective tool in day to day operation planning scenarios in response to potential contingencies. The switching options are determined using an efficient heuristic algorithm based on DC optimal power flow, and are presented in a multi-branch tree structure. Then, the AC feasibility and stability checks are conducted and the CB condition monitoring data are employed to perform a CB reliability and line availability assessment. Ultimately, the operator will be offered multiple AC feasible and stable switching options with associated benefits. The operator can use this information, other operating conditions not explicitly considered in the optimization, and his/her own experience to implement the best and most reliable switching action(s). The effectiveness of the proposed approach is validated on the IEEE-118 bus test system. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Hitherto, electron transfer (ET) between redox proteins has been deemed to occur via donor-acceptor binding, and diffusible reactive species are considered as deleterious side-products in such systems. Herein, ET from cytochrome P450 reductase (CPR, an animal membrane flavoprotein) and horseradish peroxidase (HRP, a plant hemoprotein) to cytochrome c (Cyt c, a soluble animal hemoprotein) was probed under diverse conditions, using standard assays. ET in the CPR-Cyt c system was critically inhibited by cyanide and sub-equivalent levels of polar one-electron cyclers like copper ions, vitamin C/Trolox and superoxide dismutase. In the presence of lipids, inhibition was also afforded by amphipathic molecules vitamin E, palmitoyl-vitamin C and the membrane hemoprotein, cytochrome b(5). Such nonspecific inhibition (by diverse agents in both aqueous and lipid phases) indicated that electron transfer/relay was effected by small diffusible agents, whose lifetimes are shortened by the diverse radical scavengers. When CPR was retained in a dialysis membrane and Cyt c presented outside in free solution, ET was still observed. Further, HRP (taken at nM levels) catalyzed oxidation of a phenolic substrate was significantly inhibited upon the incorporation of sub-nM levels of Cyt c. The findings imply that CPR-Cyt c or HRP-Cyt c binding is not crucial for ET. Further, fundamental quantitative arguments (based on diffusion/collision) challenge the erstwhile protein-protein binding-assisted ET hypothesis. It is proven beyond reasonable doubt that mobile and diffusible electron carriers (ions and radicals) serve as ``redox-relay agents'' in the biological ET models/setup studied.