906 resultados para CATIONIC SURFACTANT
Resumo:
PURPOSE: Characterization of the structural changes occurring in the pulmonary arteries resulting from surgically produced congenital diaphragmatic hernia in rabbits, with particular emphasis on the preventive effects of prenatal tracheal ligation or administration of intra-amniotic dexamethasone or surfactant. METHODS: Twenty rabbit fetuses underwent surgical creation of a left-sided congenital diaphragmatic hernia on the 24th or 25th gestational day. They were divided according to the following procedures: congenital diaphragmatic hernia (n = 5), congenital diaphragmatic hernia plus tracheal ligation (n = 5), congenital diaphragmatic hernia plus intra-amniotic administration of dexamethasone 0.4 mg (n = 5) or surfactant (Curosurf 40 mg, n = 5). On gestational day 30, all the fetuses were delivered by caesarean section and killed. A control group consisted of five nonoperated fetuses. Histomorphometric analysis of medial thickness, cell nuclei density, and elastic fiber density of pulmonary arterial walls was performed. RESULTS: Arteries with an external diameter > 100 mum have a decreased medial thickness, lower cell nuclei density, and greater elastic fiber density when compared with arteries with external diameter <= 100 mum. Congenital diaphragmatic hernia promoted a significant decrease in medial thickness and an increase in cell nuclei density in artery walls with external diameter > 100 mum. Prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes. In arteries with external diameter <= 100 mum, congenital diaphragmatic hernia promoted a significant increase in medial thickness and in cell nuclei density and a decrease in elastic fiber density. The prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes, although no effect was observed in elastic fiber density in the congenital diaphragmatic hernia plus dexamethasone group. CONCLUSIONS: Congenital diaphragmatic hernia promoted different structural changes for large or small arteries. The prenatal intra-amniotic administration of dexamethasone or surfactant had positive effects on the lung structural changes promoted by congenital diaphragmatic hernia, and these effects were comparable to the changes induced by tracheal ligation.
Resumo:
OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O · kg) was 0.87 ± 0.07 (Control); 0.49 ± 0.04 (MEC*); 0.67 ± 0.06 (S100); and 0.67 ± 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 ± 0.9 (Control); 16.5 ± 1.7 (MEC*); 12.4 ± 1.1 (S100); and 12.1 ± 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 ± 1.9 (Control); 11.3 ± 2.5 (MEC*), 5.8 ± 1.9 (S100); and 6.7 ± 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.
Resumo:
Tese de Doutoramento Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde
Resumo:
The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream. METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders. RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared. CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.
Resumo:
Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.
Resumo:
We read with interest the article by Qiu et al (Thorax 2007;62:475–82). In this paper, neutrophils and eosinophils were identified using mouse anti-human neutrophil elastase and anti-eosinophil cationic protein (ECP), both monoclonal antibodies (mAbs). mAbs against ECP have been used to detect total eosinophils, but immunostaining techniques evidenced that the number of ECP+ cells was higher than the number of eosinophils.1 Recent studies show that ECP is not only a distinctive eosinophil protein, but has been found in neutrophils.1–3
Resumo:
OBJECTIVES: Inhalation of bioaerosols has been hypothesised to cause "toxic pneumonitis" that should increase lung epithelial permeability at the bronchioloalveolar level. Serum Clara cell protein (CC16) and serum surfactant protein B (SPB) have been proposed as sensitive markers of lung epithelial injury. This study was aimed at looking for increased lung epithelial permeability by determining CC16 and SPB in workers exposed to bioaerosols from wastewater or garbage. METHODS: Subjects (778 wastewater, garbage and control workers; participation 61%) underwent a medical examination, lung function tests [American Thoracic Society (ATS) criteria], and determination of CC16 and SPB. Symptoms of endotoxin exposure and several potential confounders (age, gender, smoking, kidney function, obesity) were looked for. Results were examined with multiple linear or logistic regression. RESULTS: Exposure to bioaerosols increased CC16 concentration in the wastewater workers. No effect of exposure on SPB was found. No clue to work-related respiratory diseases was found. CONCLUSIONS: The increase in CC16 in serum supports the hypothesis that bioaerosols cause subclinical "toxic pneumonitis", even at low exposure. [Authors]
Resumo:
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are currently under development for the intracellular delivery of therapeutics. However, the mechanisms of cellular uptake and the cellular reaction to this uptake, independent of therapeutics, are not well defined. The interactions of biocompatible cationic aminoUSPIONs with human cells was studied in 2D and 3D cultures using biochemical and electron microscopy techniques. AminoUSPIONs were internalized by human melanoma cells in 2D and 3D cultures. Uptake was clathrin mediated and the particles localized in lysosomes, inducing activation of the lysosomal cathepsin D and decreasing the expression of the transferrin receptor in human melanoma cells and/or skin fibroblasts. AminoUSPIONs deeply invaded 3D spheroids of human melanoma cells. Thus, aminoUSPIONs can invade tumors and their uptake by human cells induces cell reaction.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.
Resumo:
Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.
Resumo:
The efficacy of an antisense oligonucleotide (ODN17) cationic nanoemulsion directed at VEGF-R2 to reduce neovascularization was evaluated using rat corneal neovascularization and retinopathy of prematurity (ROP) mouse models. Application of saline solution or scrambled ODN17 solution on eyes of rats led to the highest extent of corneal neovascularization. The groups treated with blank nanoemulsion or scrambled ODN17 nanoemulsion showed moderate inhibition in corneal neovascularization with no significant difference with the saline and scrambled ODN17 control solution groups, while the groups treated with ODN17 solution or Avastin® (positive ODN17 control) clearly elicited marked significant inhibition in corneal neovascularization confirming the results reported in the literature. The highest significant corneal neovascularization inhibition efficiency was noted in the groups treated with ODN17 nanoemulsion (topical and subconjunctivally). However, in the ROP mouse model, the ODN17 in PBS induced a 34% inhibition of retinal neovascularization when compared to the aqueous-vehicle-injected eyes. A significantly higher inhibition of vitreal neovascularization (64%) was observed in the group of eyes treated with ODN17 nanoemulsion. No difference in extent of neovascularization was observed between blank nanoemulsion, scrambled ODN17 nanoemulsion, vehicle or non-treated eyes. The overall results indicate that cationic nanoemulsion can be considered a promising potential ocular delivery system and an effective therapeutic tool of high clinical significance in the prevention and forthcoming treatment of ocular neovascular diseases.
Resumo:
Endotoxin causes an inflammation at the bronchial and alveolar level. The inflammation-induced increase in permeability of the bronchoalveolar epithelial barrier is supposed to cause a leakage of pneumoproteins. Therefore, their concentrations are expected to increase in the bloodstream.This study aimed at examining the association between occupational exposure to endotoxin and a serum pneumoprotein, surfactant protein A, to look for nonoccupational factors capable of confounding this association, and examine the relation between surfactant protein A and spirometry. There were 369 control subjects, 325 wastewater workers, and 84 garbage collectors in the study. Exposure to endotoxin was assessed through personal sampling and the Limulus amebocytes lysate assay. Surfactant protein A was determined by an in house sandwich enzyme-linked immunosorbent assay (ELISA) in 697 subjects. Clinical and smoking history were ascertained and spirometry carried out according to American Thoracic Society criteria. Multiple linear regression was used for statistical analysis. Exposure was fairly high during some tasks in wastewater workers but did not influence surfactant protein A. Surfactant protein A was lower in asthmatics. Interindividual variability was large. No correlation with spirometry was found. Endotoxin has no effect on surfactant protein A at these endotoxin levels and serum surfactant protein A does not correlate with spirometry. The decreased surfactant protein A secretion in asthmatics requires further study.