967 resultados para CASPASE-3
Resumo:
The objective of the present study was to investigate the correlation between macrophage activity and apoptosis in the polar forms of leprosy because the immunopathological phenomena involved in these forms are still poorly understood For this purpose, 29 skin biopsy samples obtained from patients with the polar forms of leprosy were analyzed. Macrophage activity and apoptosis were evaluated by immunohistochemistry using lysozyme, CD68, iNOS and caspase 3 as markers The nonparametric Mann-Whitney test and Spearman`s linear correlation test were used for statistical analysis The results suggest that the apoptosis rate is under the direct influence of macrophage activity in lesions of patients with the tuberculoid form In contrast, in lepromatous lesions other factors seem to induce programmed cell death, possibly TGF-beta. Further studies are necessary to identify additional factors involved in the immunopathogenesis of leprosy. (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed and MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 mu M) or quercetin (25 mu M) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 mu M) and quercetin (25 mu M) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence-like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655-1662).
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
High energy intake and excessive body fatness impair mammogenesis in prepubertal ruminants. High energy intake and excessive fatness also increase serum leptin. Our objective was to determine if an infusion of leptin decreases proliferation of mammary epithelial cells of prepubertal heifers in vivo. Ovine leptin at 100 mu g/quarter per d with or without 10 mu g of insulin-like growth factor (IGF)-I was infused via the teat canal into mammary glands of prepubertal dairy heifers; contralateral quarters were used as controls. After 7 d of treatment, bromodeoxyuridine was infused intravenously and heifers were slaughtered similar to 2 h later. Tissue from 3 regions of the mammary parenchyma was collected and immunostained for bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (Ki-67), and caspase-3. Leptin decreased the number of mammary epithelial cells in the S-phase of the cell cycle by 48% in IGF-I-treated quarters and by 19% in saline-treated quarters. Leptin did not alter the number of mammary epithelial cells within the cell cycle, as indicated by Ki-67 labeling. Caspase-3 immunostaining within the mammary parenchyma was very low in these heifers, but leptin significantly increased labeling in saline-treated quarters. Leptin enhanced SOCS-3 expression in IGF-I-treated quarters but did not alter SOCS-1 or SOCS-5 expression. We conclude that a high concentration of leptin in the bovine mammary gland reduces proliferation of mammary epithelial cells. The reduced proliferation is accompanied by an increase in SOCS-3 expression, suggesting a possible mechanism for leptin inhibition of IGF-I action. Whether leptin might be a physiological regulator of mammogenesis remains to be determined.
Resumo:
Prostate growth and physiology are regulated by steroid hormones and modulated by multiple endocrine factors We investigated the action of insulin on the tissue organization and kinetics of epithelial cells in the rat ventral prostate (VP) in response to castration up to 120 hours after surgery by using an acute protocol of alloxan induced diabetes Diabetes caused a reduction in volume density (Vv(o)/) and volume of the epithelium The effects of castration on the epithelium were accelerated in the diabetic animals as determined by changes in V(o)/, and volume The smooth muscle cells became atrophic and apparently relaxed in response to castration in contrast to the spinous aspect observed in nondiabetic castrated rats Counting of apoptotic nuclei in the epithelium showed the classical apoptosis peak at 72 hours in nondiabetic rats and an advance of the apoptosis peak to 48 hours after castration in diabetic rats Insulin restored the time of the peak to 72 hours These results were confirmed after immunostaining for cleaved caspase 3 and suggest a survival and antiapoptotic effect on VP epithelial cells in both the presence and absence of androgen stimulation This idea is supported by the observation that insulin also reduced the overall rate of apoptosis at all experimental points analyzed before and after castration
Resumo:
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4(+) Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.
Resumo:
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated tau and insoluble tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered tau pathology.
Resumo:
We sought to verify the prevalence of lymphocytic thyroiditis (LT) and Hashimoto's thyroiditis (HT) in autopsy materials. Cases examined between 2003 and 2007 at the Department of Pathology of Faculty of Medicine of São Paulo University were studied. Immunohistochemical analyses were conducted in selected cases to characterize the type of infiltrating mononuclear cells; in addition, we evaluated the frequency of apoptosis by TUNEL assay technique and caspase-3 immunostaining. Significant increase in overall thyroiditis frequency was observed in the present series when compared with the previous report (2.2978% vs. 0.0392%). Thyroiditis was more prevalent among older people. Selected cases of LT and HT (5 cases each) had their infiltrating lymphocytes characterized by immunohistochemical analyses. Both LT and HT showed similar immunostaining patterns for CD4, CD8, CD68, thus supporting a common pathophysiology mechanism and indicating that LT and HT should be considered different presentations of a same condition, that is, autoimmune thyroiditis. Moreover, apoptosis markers strongly evidenced that apoptosis was present in all studied cases. Our results demonstrated an impressive increase in the prevalence of thyroiditis during recent years and our data support that the terminology of autoimmune thyroiditis should be used to designate both LT and HT. This classification would facilitate comparison of prevalence data from different series and studies.
Resumo:
Abstract Background: Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective: The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods: Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results: TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion: TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.
Resumo:
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Resumo:
The multiplicity of cell death mechanisms induced by neonatal hypoxia-ischemia makes neuroprotective treatment against neonatal asphyxia more difficult to achieve. Whereas the roles of apoptosis and necrosis in such conditions have been studied intensively, the implication of autophagic cell death has only recently been considered. Here, we used the most clinically relevant rodent model of perinatal asphyxia to investigate the involvement of autophagy in hypoxic-ischemic brain injury. Seven-day-old rats underwent permanent ligation of the right common carotid artery, followed by 2 hours of hypoxia. This condition not only increased autophagosomal abundance (increase in microtubule-associated protein 1 light chain 3-11 level and punctuate labeling) but also lysosomal activities (cathepsin D, acid phosphatase, and beta-N-acetylhexosaminidase) in cortical and hippocampal CA3-damaged neurons at 6 and 24 hours, demonstrating an increase in the autophagic flux. In the cortex, this enhanced autophagy may be related to apoptosis since some neurons presenting a high level of autophagy also expressed apoptotic features, including cleaved caspase-3. On the other hand, enhanced autophagy in CA3 was associated with a more purely autophagic cell death phenotype. In striking contrast to CA3 neurons, those in CA1 presented only a minimal increase in autophagy but strong apoptotic characteristics. These results suggest a role of enhanced autophagy in delayed neuronal death after severe hypoxia-ischemia that is differentially linked to apoptosis according to the cerebral region.