968 resultados para CA2 -DEPENDENT ANIMAL LECTINS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deflection of the mechanically sensitive hair bundle atop a hair cell opens transduction channels, some of which subsequently reclose during a Ca2+-dependent adaptation process. Myosin I in the hair bundle is thought to mediate this adaptation; in the bullfrog's hair cell, the relevant isozyme may be the 119-kDa amphibian myosin I beta. Because this molecule resembles other forms of myosin I, we hypothesized that calmodulin, a cytoplasmic receptor for Ca2+, regulates the ATPase activity of myosin. We identified an approximately 120-kDa calmodulin-binding protein that shares with hair-bundle myosin I the properties of being photolabeled by vanadate-trapped uridine nucleotides and immunoreactive with a monoclonal antibody raised against mammalian myosin I beta. To investigate the possibility that calmodulin mediates Ca2+-dependent adaptation, we inhibited calmodulin action and measured the results with two distinct assays. Calmodulin antagonists increased photolabeling of hair-bundle myosin I by nucleotides. In addition, when introduced into hair cells through recording electrodes, calmodulin antagonists abolished adaptation to sustained mechanical stimuli. Our evidence indicates that calmodulin binds to and controls the activity of hair-bundle myosin I, the putative adaptation motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The restriction of phosphatidylserine (PtdSer) to the inner surface of the plasma membrane bilayer is lost early during apoptosis. Since PtdSer is a potent surface procoagulant, and since there is an increased incidence of coagulation events in patients with systemic lupus erythematosus (SLE) who have anti-phospholipid antibodies, we addressed whether apoptotic cells are procoagulant and whether anti-phospholipid antibodies influence this. Apoptotic HeLa cells, human endothelial cells, and a murine pre-B-cell line were markedly procoagulant in a modified Russell viper venom assay. This procoagulant effect was entirely abolished by addition of the PtdSer-binding protein, annexin V, confirming that it was PtdSer-dependent. The procoagulant effect was also abolished by addition of IgG purified from the plasma of three patients with anti-phospholipid antibody syndrome, but not IgG from normal controls. Confocal microscopy of apoptotic cells stained with fluorescein-isothiocyanate-conjugated-annexin V demonstrated (Ca2+)-dependent binding to the surface of membrane blebs o apoptotic cells, but not to intracellular membranes. Recent data indicate that the surface blebs of apoptotic cells constitute an important immunogenic particle in SLE. We propose that the PtdSer exposed on the outside of these blebs can induce the production of anti-phospholipid antibodies, which might also enhance the immunogenicity of the bleb contents. When apoptosis occurs in a microenvironment in direct contact with circulating plasma, the unique procoagulant consequences of the apoptotic surface may additionally be expressed. This might explain the increased incidence of pathological intravascular coagulation events that occur in some lupus patients who have anti-phospholipid antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G-proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways. ©2005 FASEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a Ca2+-dependent enzyme and probably the most ubiquitously expressed member of the mammalian transglutaminase family. TG2 plays a number of important roles in a variety of biological processes. Via its transamidating function, it is responsible for the cross-linking of proteins by forming isopeptide bonds between glutamine and lysine residues. Intracellularly, Ca2+ activation of the enzyme is normally tightly regulated by the binding of GTP. However, upregulated levels of TG2 are associated with many disease states like celiac sprue, certain types of cancer, fibrosis, cystic fibrosis, multiple sclerosis, Alzheimer's, Huntington's and Parkinson's disease. Selective inhibitors for TG2 both cell penetrating and non-cell penetrating would therefore serve as novel therapeutic tools for the treatment of these disease states. Moreover, they would provide useful tools to fully elucidate the cellular mechanisms TG2 is involved in and help comprehend how the enzyme is regulated at the cellular level. The current paper is intended to give an update on the recently discovered classes of TG2 inhibitors along with their structure-activity relationships. The biological properties of these derivatives, in terms of both activity and selectivity, will also be reported in order to translate their potential for future therapeutic developments. © 2011 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Transglutaminase-2 (TG2) is a Ca2+-dependent protein crosslinking enzyme known to play an important role in apoptotic cell clearance by macrophages through an ill-defined mechanism. Several studies have implicated TG2 in the apoptosis programme e.g. raised TG2 levels in cells undergoing apoptosis; increased cell death with down-regulation of TG2; up-regulation of TG2 in monocytes upon differentiation into macrophages. Defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be elucidated. Here we aim to characterise the role of TG2 in macrophage function with a focus on apoptotic cell clearance. THP-1 monocytes were induced to differentiate to macrophage-like cells by three different stimulants and were analysed for the presence of TG2. Macrophage-apoptotic cell interaction studies in the presence and absence of irreversible TG2 inhibitors resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. TG2 was expressed at the macrophage cell surface and its association with ß3 integrin expression suggests the possible link between TG2 and ß3 integrins. Our current findings suggest that TG2 had got a crucial but yet to be defined role in apoptotic cell clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study concerns the nature of nitric oxide synthase (NOS) and the role of nitric oxide (NO) in the rat gastrointestinal tract. The major objectives were (i) to characterise NOS isoforms in the gastric glandular mucosa, (ii) to localise NOS isoforms in the rat gastric glandular mucosa, (iii) to investigate the role of NO in carbachol-stimulated gastric mucus secretion, (iv) to investigate the nature of NOS and small intestine. Immunoblotting was performed using polyclonal antisera raised against two peptides found in the rat brain NOS sequence and commercial monoclonal antibodies directed against neuronal and endothelial isoforms of NOS. A160kDa band was detected in brain and gastric mucosal samples with antibodies and antisera directed against neuronal NOS sequences, and a 140kDa band was detected in gastric mucosal samples using an anti-endothelial NOS antibody. An intense 160kDa neuronal NOS band was detected in a high-density fraction of gastric mucosal cells separated on a Percoll gradient. Detection of neuronal NOS by a carboxyl-terminal antiserum in samples of brain, but not of gastric mucosa, could be blocked by the peptide (20g/ml) against which the antibody was raised. After affinity purification, recognition of gastric mucosal NOS was blocked by peptide. Particulate neuronal NOS was found in the brain by immunoblotting while 94% of gastric mucosal enzyme was soluble. Gastric mucosal endothelial NOS was 95% particulate. 95% of NOS activity in the gastric mucosa was due to neuronal NOS. Paraformaldehyde- and acetone-fixed gastric mucosal sections were subject to immunocytochemistry using the above antibodies. Neuronal NOS was localised to the surface mucosal epithelial cells while endothelial NOS was associated with microvessels at the base of the mucosa and to larger vessels in the submucosa. Intragastric administration of carbachol or 16, 16-dimethyl prostaglandin E2 increased the thickness of the rat gastric mucus layer. The NOS inhibitor NG-nitro-L-arginine methyl ester dose-dependently, and selectively, prevented the stimulatory effect of carbachol. Ca2+-independent NOS activity in rat ileal, jejunal and colonic muscle was increased after LPS induction. Ca2+-dependent activity was not affected. Distribution of inducible NOS protein paralleled Ca2+ -independent activity. LPS treatment did not affect the content of neuronal NOS in colonic muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to increase knowledge of the mechanisms of inter- and intracellular signalling in the gastrointestinal tract. Specific aims were: to use cell lines to elucidate factors affecting growth of gastric cells, to investigate the distribution and aspects of function of isoforms of protein kinase C in a gastric cell line and in the rat gastrointestinal tract and to determine the presence and regulation of nitric oxide synthase in gastrointestinal tissues from the rat and in cell lines. The gastric cancer cell line HGT-1 was used to investigate control of growth. Increases in cell number were found to be dependent on the seeding density of the cells. In cells plated at low density insulin, epidermal growth factor and gastrin all increased cell number. Gastrin produced a bell-shaped dose response curve with a maximum activity at 5nM. No effect of gastrin was apparent in cells plated at high density. α and β isoforms of protein kinase C were found, by immunoblotting procedures, to be widespread in the gastrointestinal tract of the rat, but protein kinase Cε was confined to the gastric mucosa and gastrointestinal smooth muscle. HGT-1 cells contained protein kinase C α and ε but β or γ were not detected. Preincubation of HGT-1 cells for 24h with 1μM phorbol-12,13-dibutyrate down-regulated protein kinase C α but not ε. The inhibition by the activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate (TPA) of the histamine-stimulated increase in cAMP in HGT-1 cells was down regulated by phorbol-12,13-dibutyrate. Inhibition of histamine-stimulation of adenylate cyclase by TPA was Ca2+-dependent and inhibited by the addition of an antibody to protein kinase C α. A role for protein kinase C α in modulating the effect of histamine on adenylate cyclase in HGT-1 cells is suggested. No nitric oxide synthase activity was detected in the gastrointestinal cell lines HGT-l, MKN-45 or CaCo-2. Ca2+-dependent nitric oxide synthase activity was observed in the gastric mucosa and the gastrointestinal smooth muscle from stomach to colon. The gastric: mucosal enzyme was soluble and showed half-maximal activity at 400nM Ca2+. Pretreatment of rats with endotoxin (3mg/kg body weight) induced nitric oxide synthase activity in both jejunal, ileal and colonic mucosa and muscle. A major portion of the induced activity in ileal and colonic mucosa was Ca2+-independent. Nitric oxide synthase activity in a high-density fraction of gastric mucosal cells was inhibited in a dose-dependent fashion by L-nitroarginine, NG-monomethyl-L-arginine, trifluoperazine and L-canavanine (in descending order of potency). Preincubation with okadaic acid and addition of ATPlMg2+ to the homogenisation buffer inhibited enzyme activity, which implies that phosphorylation inhibits gastric mucosal nitric oxide synthase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study concerns the production and action of the local mediators nitric oxide (NO) and prostaglandin E2 (PGE2) in the rat gastric mucosa. The major objectives were: (i) to determine which mucosal cell type(s) contained NO synthase activity, (ii) to establish the functional role(s) of NO in the gastric mucosa and (iii) to investigate regulation of gastric PGE2 production. Gastric mucosal cells were isolated by pronase digestion coupled with intermittent calcium chelation and were separated by either density-gradient centrifugation or by counterflow elutriation. The distribution of Ca2+ -dependent NO synthase activity, measured via the conversion of [14C]-L-arginine to [14C]-L- citrulline, paralleled the distribution of mucous cells in elutriated fractions. Pre-treatment of rats with lipopolysaccharide caused the induction of Ca2+ -independent NO synthase in the elutriator fractions enriched with mucous cells. Incubation of isolated cells with the NO donor isosorbide dinitrate (ISDN) produced a concentration-dependent increase in the guanosine 3',-5'-cyclic monophosphate (cGMP) content which was accompanied by a concentration-dependent increase in release of immunoreactive mucin. Intragastric administration of ISDN of dibutyryl cGMP in vivo increased the thickness of the mucus layer overlying the gastric mucosa. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) produced a concentration-dependent inhibition (IC50 247 μM) of histamine-stimulated aminopyrine accumulation, a measure of secretory activity, in cell suspensions containing > 80% parietal cells. SNAP increased the cGMP content of the suspension but did not decrease cellular viability, glucose oxidation or adenosine 3',5'-cyclic monophosphate content. The inhibitory effect of SNAP was observed in permeabilised cells stimulated with ATP and was stereospecifically blocked by preincubation with Rp-8-bromoguanosine 3'-5'-monophosphorothioate, which inhibits activation of cGMP-dependent protein kinase. Stimulation of PGE2 release by bradykinin in a low density cell fraction, enriched with parietal cells and devoid of vascular endothelial cells and macrophages, involved a bradykinin B1 receptor. In summary, NO synthase activity is probably present in gastric mucous epithelial cells. NO may promote mucus secretion by elevation of cGMP. NO donors inhibit acid secretion at a specific site and their action may involve cGMP. The bradykinin B1 receptor is involved with PGE2 production in the gastric mucosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is a highly regulated process that removes damaged or unwanted cells in vivo and defective clearance of apoptotic cells by macrophages has significant immunological implications. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in cell proliferation, differentiation, carcinogenesis, programmed death, and aging. TG2 as a guanosine triphosphate (GTP)-binding or GTP- hydrolyzing protein for mediating signal transduction and as a cell cycle regulator emphasized the importance of this enzyme in aging process. The ubiquitous presence of TG2 compared to the other organ-specific TGases has attracted special attention as a cellular aging device. TG2 activity and expression are known to increase in aging humans suggesting possible involvement in several age-related processes such as decrease in vascular compliance and increased stiffening of conduit arteries, cataract formation, Alzheimer's disease and senescent epidermal keratinocytes. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function. THP-1 cell derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors resulted in significant inhibition of interaction. Macrophage cell surface TG2 and, in particular, its cell surface cross linking activity was found to be crucial in apoptotic cell clearance. Syndecan-4 association with TG2 implies possible cooperation of these proteins and knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of S100A4, a Ca2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and a5ß1 integrin co-signalling pathways linked by activation of PKCa in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca2+-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins or γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the Km and the Vmax kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2 -driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of cross-linked proteins correlates with the manifestation of degenerative disorders.