854 resultados para C-reactive proteins
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.
Resumo:
The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.
Resumo:
A phosphorylcholine-binding protein from the hemolymph of the snail Achatina fulica was purified to near homogeneity using a Sepharose phenylphosphorylcholine affinity column. The protein bound to the affinity column was eluted with 5 mM phosphorylcholine as a single symmetrical peak. The purified protein (400 Kda) contained 35–40% carbohydrate. On SDS-PAGE the protein separated into two bands of 20 and 24 Kda, and had a pI of 5.9. On immunodiffusion, antiserum to the snail phosphorylcholine binding protein did not cross-react against other phosphorylcholine binding proteins, like rat serum phosphorylcholine-binding protein (PCBP), limulus C-reactive protein (CRP), or human CRP. On pretreatment of the snail hemolymph with this antiserum, the hemagglutination titer of the hemolymph was markedly decreased. The purified snail phosphorylcholine binding protein agglutinated rabbit erythrocytes in the absence of divalent cation (Ca+2) but trace amount of Ca+2 increased its binding. The strongest inhibitor of the agglutination reaction was lactose, followed by melibiose and 2-deoxygalactose. The relationships of the snail phosphorylcholine binding protein to other hemolymph agglutinins and to CRPs are discussed in light of common phylogeny.
Resumo:
Evidências recentes sugerem que as doenças periodontais podem desempenhar um papel relevante na etiologia e patogênese de doenças cardiovasculares e hipertensão arterial. A resposta inflamatória, com conseqüente elevação de marcadores sistêmicos como proteína C-reativa, fibrinogênio e interleucina-6, e a disfunção endotelial, podem ser os responsáveis por essa associação. Alguns estudos têm relatado maiores níveis pressóricos, maior massa ventricular esquerda e disfunção endotelial em pacientes com doenças periodontais. Ao mesmo tempo, estudos clínicos vêm mostrando que a terapia periodontal pode levar à redução dos níveis plasmáticos dos marcadores de inflamação e redução do risco cardiovascular. O presente estudo teve como objetivo avaliar os efeitos da terapia periodontal não-cirúrgica em 26 pacientes (idade média de 53.68.0 anos) hipertensos refratários. Foram avaliados marcadores plasmáticos de inflamação (proteína C-reativa, fibrinogênio e interleucina-6), pressão arterial sistólica e diastólica, massa ventricular esquerda e rigidez arterial. A terapia periodontal foi eficaz na redução da média de todos os marcadores de risco cardiovascular avaliados. Os níveis de proteína C-reativa baixaram 0.7mg/dl 6 meses após a terapia periodontal, os de IL-6, 1.6pg/dl e os de fibrinogênio 55.3mg/dl (p<0.01). A pressão arterial sistólica apresentou redução média de 16.7mmHg e a diastólica de 9.6mmHg. A massa ventricular esquerda diminuiu em média 12.9g e a velocidade da onda de pulso, um marcador de rigidez arterial, e consequentemente de disfunção endotelial, apresentou redução de seus valores médios de 0.9m/s (p<0.01). Dessa forma, conclui-se que a terapia periodontal foi eficaz na redução dos níveis de proteína C-reativa, interleucina-6, fibrinogênio, pressão arterial, massa ventricular esquerda e rigidez arterial.
Resumo:
A Pré-eclâmpsia (PE) é uma síndrome hipertensiva específica da gravidez, atualmente compreendida como uma doença sistêmica que cursa com inflamação, distúrbios da coagulação, desordens metabólicas, disfunção endotelial e desequilíbrio entre agentes vasoconstrictores e vasodilatadores. Contudo, a fisiopatologia da PE ainda não foi completamente elucidada. Este estudo investigou, em 51 gestantes, o estresse oxidativo, a via L-arginina-óxido nítrico e agregação plaquetária, na gestação normal (n=27) e na PE (n=24). Amostras de soro e plaquetas de gestantes normotensas e com PE, foram utilizadas para a medida de espécies reativas ao ácido tiobarbitúrico (TBARS), a carbonilação de proteínas, a atividade das enzimas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx), assim como a produção de óxido nítrico (NO) pela formação de nitrito. Nas plaquetas foram avaliados, também, o transporte de L-arginina, a atividade da óxido nítrico sintase (NOS) e a agregação plaquetária. Em amostras de plasma foram realizadas medidas da proteína C reativa ultra-sensível (PCRus) e do aminoácido L-arginina. Estes resultados demonstram que não há diferença nas medidas da proteína C reativa e da L-arginina entre gestantes normotensas e com PE. A formação de nitritos e a atividade das enzimas antioxidantes SOD, CAT e GPx se encontram reduzidas no soro de gestantes com PE, enquanto a medida de TBARS e a carbonilação de proteínas não foi diferente das gestantes normotensas. Em plaquetas, o transporte de L-arginina pelo sistema y+L está diminuído na PE, ao passo que, a atividade da NOS, a formação de nitrito e a agregação plaquetária não modificaram em relação a gestação normal. A carbonilação de proteínas está aumentada em plaquetas na PE e a atividade da CAT está reduzida. Concluiu-se, que a menor formação de nitrito no soro sugere uma menor produção de NO em pacientes com PE. Este dado correlaciona com uma redução da defesa antioxidante observada pela menor atividade das enzimas SOD, CAT, GPx que deve contribuir para uma maior inativação do NO. Apesar dos níveis plasmáticos normais de L-arginina na PE, o sistema de transporte via y+L está reduzido em plaquetas, o que pode estar associado em parte ao estresse oxidativo que contribui para alterações físicas e estruturais da membrana, podendo afetar o influxo do aminoácido. Apesar do transporte de L-arginina reduzido e do aumento do estresse oxidativo em plaquetas na PE, não houve alteração da atividade da NOS, da produção de NO e da agregação plaquetária, indicando que mecanismos compensatórios possam estar contribuindo para a manutenção da produção de NO e de sua função modulatória sobre a agregação
Resumo:
A adiponectina, um hormônio produzido pelo tecido adiposo, atua na regulação do metabolismo energético e interfere favoravelmente na sensibilidade à insulina através de suas ações no fígado e musculatura esquelética. Ao contrário da maioria das outras adipocitocinas, associa-se inversamente com a obesidade visceral, resistência à insulina, diabetes tipo 2 e doença cardiovascular. Inúmeros estudos demonstraram nos últimos anos os efeitos de variantes genéticas no gene ADIPOQ sobre os níveis circulantes de adiponectina, resistência à insulina, diabetes e obesidade. Entretanto, além de resultados contraditórios, a maior parte desses estudos foi realizada em populações Caucasianas e Asiáticas. Avaliar, em uma população multiétnica adulta do município do Rio de Janeiro, as possíveis associações das variantes genéticas (-11391 G>A, -11377C>G, +45T>G e T517G) no gene ADIPOQ com o fenótipo obeso, níveis circulantes de adiponectina de alto peso molecular e fatores de risco cardiometabólico. Trata-se de um estudo transversal. Foram estudados 100 indivíduos eutróficos (IMC 18,5 24,9 kg/m2, idade: 32,5 + 9,8 anos) e 100 obesos (IMC 30 58,2 kg/m2, idade 37,5 + 14,1 anos), igualmente divididos entre homens e mulheres. Os indivíduos obesos apresentaram valores significativamente maiores de circunferência abdominal, pressão arterial sistólica, diastólica e média, glicemia de jejum, triglicerídeos, LDL-colesterol, leptina, insulina, HOMA-IR e proteína C reativa, quando comparados aos eutróficos. Contrariamente, exibiram menores valores de adiponectina e HDL-colesterol. Análises de correlação mostraram relação inversa e significativa entre a adiponectina, circunferência abdominal, insulina, HOMA-IR e pressão arterial. Com os níveis de HDL-colesterol, a correlação foi positiva. Por meio de análise de regressão múltipla foi possível identificar os determinantes dos níveis séricos de adiponecinta. Sexo masculino, circunferência abdominal, HOMA-IR e a variante genética -11391G>A, foram os principais responsáveis por essa variação, com um R2 de 30%. Quanto à análise genética, não encontramos nenhuma associação entre essas variantes e o fenótipo obeso. Entretanto, os indivíduos carreadores do alelo mutante -11391A apresentaram menores valores de glicemia, pressão arterial e relação cintura-quadril e maiores concentrações sanguíneas de adiponectina, quando comparados aos indivíduos ditos selvagens. Ademais, os carreadores do alelo mutante -11377G apresentaram menores valores de pressão arterial sistólica, diastólica e média. Os resultados do presente estudo demonstram que níveis de adiponectina diferem entre eutróficos e obesos e que concentrações mais baixas dessa adipocitocina estão associadas a um pior perfil cardiometabólico. Variantes no gene ADIPOQ podem interferir nessa relação e alguns polimorfismos parecem ter um perfil protetor no risco cardiovascular.
Resumo:
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
Serum PEDF levels (mean (S.D.)) were increased in 96 Type 2 diabetic vs. 54 non-diabetic subjects; 5.3 (2.8) vs. 3.2 (2.0)mug/ml, p
Resumo:
Observational data show an inverse association between the consumption of whole-grain foods, and inflammation and related diseases. Although the underlying mechanisms are unclear, whole grains, and in particular the aleurone layer, contain a wide range of components with putative antioxidant and anti-inflammatory effects. We evaluated the effects of a diet high in wheat aleurone on plasma antioxidants status, markers of inflammation and endothelial function. In this parallel, participant-blinded intervention, seventy-nine healthy, older, overweight participants (45-65 years, BMI>25 kg/m²) incorporated either aleurone-rich cereal products (27 g aleurone/d), or control products balanced for fibre and macronutrients, into their habitual diets for 4 weeks. Fasting blood samples were taken at baseline and on day 29. Results showed that, compared to control, consumption of aleurone-rich products provided substantial amounts of micronutrients and phytochemicals which may function as antioxidants. Additionally, incorporating these products into a habitual diet resulted in significantly lower plasma concentrations of the inflammatory marker, C-reactive protein (P = 0·035), which is an independent risk factor for CVD. However, no changes were observed in other markers of inflammation, antioxidant status or endothelial function. These results provide a possible mechanism underlying the beneficial effects of longer-term whole-grain intake. However, it is unclear whether this effect is owing to a specific component, or a combination of components in wheat aleurone.
Resumo:
Eight Duroc × (Landrace × Large White) male pigs housed at a stocking rate of 0.50 m2/pig were subjected to a higher stocking rate of 0.25 m2/pig (higher density, HD) for two 4-day periods over 26 days. Using biochemical and proteomic techniques serum and plasma samples were examined to identify potential biomarkers for monitoring stress due to HD housing. HD housed pigs showed significant differences (P < 0.001) in total cholesterol and low density lipoprotein-associated cholesterol, as well as in concentrations of the pig-major acute phase protein (Pig-MAP) (P = 0.002). No differences were observed in serum cortisol or other acute phase proteins such as haptoglobin, C-reactive protein or apolipoprotein A–I. HD-individuals also showed an imbalance in redox homeostasis, detected as an increase in the level of oxidized proteins measured as the total plasma carbonyl protein content (P < 0.001) with a compensatory increase in the activity of the antioxidant enzyme glutathione peroxidase (P = 0.012). Comparison of the serum proteome yielded a new potential stress biomarker, identified as actin by mass spectrometry. Cluster analysis of the results indicated that individuals segregated into two groups, with different response patterns, suggesting that the stress response depended on individual susceptibility.
Resumo:
Background/Purpose:Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic, childhood onset, autoimmune diseases with variable clinical outcomes. We investigated whether profiling of the synovial fluid (SF) proteome by a fluorescent dye based, two-dimensional gel (DIGE) approach could distinguish the subset of patients in whom inflammation extends to affect a large number of joints, early in the disease process. The post-translational modifications to candidate protein markers were verified by a novel deglycosylation strategy.Methods:SF samples from 57 patients were obtained around time of initial diagnosis of JIA. At 1 year from inclusion patients were categorized according to ILAR criteria as oligoarticular arthritis (n=26), extended oligoarticular (n=8) and polyarticular disease (n=18). SF samples were labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with vitamin D binding protein (VDBP) expression and siaylation further verified by immunohistochemistry, ELISA test and immunoprecipitation. Candidate biomarkers were compared to conventional inflammation measure C-reactive protein (CRP). Sialic acid residues were enzymatically cleaved from immunopurified SF VDBP, enriched by hydrophilic interaction liquid chromatography (HILIC) and analysed by mass spectrometry.Results:Hierarchical clustering based on the expression levels of a set of 23 proteins segregated the extended-to-be oligoarticular from the oligoarticular patients. A cleaved isoform of VDBP, spot 873, is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p<0.05). Conversely total levels of vitamin D binding protein are elevated in plasma and ROC curves indicate an improved diagnostic sensitivity to detect patients at risk of disease extension, over both spot 873 and CRP levels. Sialysed forms of intact immunopurified VDBP were more prevalent in persistent oligoarticular patient synovial fluids.Conclusion:The data indicate that a subset of the synovial fluid proteome may be used to stratify patients to determine risk of disease extension. Reduced conversion of VDBP to a macrophage activation factor may represent a novel pathway contributing to increased risk of disease extension in JIA patients.
Resumo:
Endothelial dysregulation is central to the pathogenesis of acute Plasmodium falciparum infection. It has been assumed that this dysregulation resolves rapidly after treatment, but this return to normality has been neither demonstrated nor quantified. We therefore measured a panel of plasma endothelial markers acutely and in convalescence in Malawian children with uncomplicated or cerebral malaria. Evidence of persistent endothelial activation and inflammation, indicated by increased plasma levels of soluble intracellular adhesion molecule 1, angiopoetin 2, and C-reactive protein, were observed at 1 month follow-up visits. These vascular changes may represent a previously unrecognized contributor to ongoing malaria-associated morbidity and mortality.
Resumo:
Infection is a leading cause of neonatal morbidity and mortality worldwide. Premature neonates are particularly susceptible to infection because of physiologic immaturity, comorbidity, and extraneous medical interventions. Additionally premature infants are at higher risk of progression to sepsis or severe sepsis, adverse outcomes, and antimicrobial toxicity. Currently initial diagnosis is based upon clinical suspicion accompanied by nonspecific clinical signs and is confirmed upon positive microbiologic culture results several days after institution of empiric therapy. There exists a significant need for rapid, objective, in vitro tests for diagnosis of infection in neonates who are experiencing clinical instability. We used immunoassays multiplexed on microarrays to identify differentially expressed serum proteins in clinically infected and non-infected neonates. Immunoassay arrays were effective for measurement of more than 100 cytokines in small volumes of serum available from neonates. Our analyses revealed significant alterations in levels of eight serum proteins in infected neonates that are associated with inflammation, coagulation, and fibrinolysis. Specifically P- and E-selectins, interleukin 2 soluble receptor alpha, interleukin 18, neutrophil elastase, urokinase plasminogen activator and its cognate receptor, and C-reactive protein were observed at statistically significant increased levels. Multivariate classifiers based on combinations of serum analytes exhibited better diagnostic specificity and sensitivity than single analytes. Multiplexed immunoassays of serum cytokines may have clinical utility as an adjunct for rapid diagnosis of infection and differentiation of etiologic agent in neonates with clinical decompensation.