985 resultados para C-JUN


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using primary cultures of neonatal rat ventricular myocytes and isolated adult rat hearts as models, we have characterized extensively the regulation of MAPKs in the heart. The ERKs are activated primarily by GPCR agonists acting through PKC. These agonists can also activate the JNKs although the mechanism is unclear. Cellular stresses stimulate strong activation of the JNKs, but also cause some stimulation of ERKs. Activation of p38-MAPK has so far only been demonstrated in intact adult hearts subjected to stresses and probably leads to activation of MAPKAPK2. Both cellular stresses and GPCR agonists induce phosphorylation of c-Jun, but only the latter causes upregulation of c-Jun protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A conscious rabbit model was used to study the effect of ischemic preconditioning (PC) on stress-activated kinases [c-Jun NH(2)-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK)] in an environment free of surgical trauma and attending external stress. Ischemic PC (6 cycles of 4-min ischemia/4-min reperfusion) induced significant activation of protein kinase C (PKC)-epsilon in the particulate fraction, which was associated with activation of p46 JNK in the nuclear fraction and p54 JNK in the cytosolic fraction; all of these changes were completely abolised by the PKC inhibitor chelerythrine. Selective enhancement of PKC-epsilon activity in adult rabbit cardiac myocytes resulted in enhanced activity of p46/p54 JNKs, providing direct in vitro evidence that PKC-epsilon is coupled to both kinases. Studies in rabbits showed that the activation of p46 JNK occurred during ischemia, whereas that of p54 JNK occurred after reperfusion. A single 4-min period of ischemia induced a robust activation of the p38 MAPK cascade, which, however, was attenuated after 5 min of reperfusion and disappeared after six cycles of 4-min ischemia/reperfusion. Overexpression of PKC-epsilon in cardiac myocytes failed to increase the p38 MAPK activity. These results demonstrate that ischemic PC activates p46 and p54 JNKs via a PKC-epsilon-dependent signaling pathway and that there are important differences between p46 and p54 JNKs with respect to the subcellular compartment (cytosolic vs. nuclear) and the mechanism (ischemia vs. reperfusion) of their activation after ischemic PC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac myocyte hypertrophy involves changes in cell structure and alterations in protein expression regulated at both the transcriptional and translational levels. Hypertrophic G protein-coupled receptor (GPCR) agonists such as endothelin-(ET-1) and phenylephrine stimulate a number of protein kinase cascades in the heart. Mitogen-activated protein kinase (MAPK) cascades stimulated include the extracellularly regulated kinase cascade, the stress-activated protein kinase/c-Jun N-terminal kinase cascade, and the p38 MAPK cascade. All 3 pathways have been implicated in hypertrophy, but recent ex vivo evidence also suggests that there may be additional effects on cell survival. ET-1 and phenylephrine also stimulate the protein kinase B pathway, and this may be involved in the regulation of protein synthesis by these agonists. Thus, protein kinase-mediated signaling may be important in the regulation of the development of myocyte hypertrophy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endothelin A (ET(A)) transmembrane receptors predominate in rat cardiac myocytes. These are G protein-coupled receptors whose actions are mediated by the G(q) heterotrimeric G proteins. Through these, ET-1 binding to ET(A)-receptors stimulates the hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 1,4,5-trisphosphate. Diacylglycerol remains in the membrane whereas inositol 1,4,5-trisphosphate is soluble (though its importance in the cardiac myocyte is still debated). Isoforms of the phospholipid-dependent protein kinase, protein kinase C (PKC), are intracellular receptors for diacylglycerol. Cytoplasmic nPKCdelta and nPKCepsilon detect increases in membrane diacylglycerols and translocate to the membrane. This brings about PKC activation, though modifications additional to binding to phospholipids and diacylglycerol are involved. The next event (probably associated with PKC activation) is the activation of the membrane-bound small G protein Ras by exchange of GTP for GDP. Ras.GTP loading translocates Raf family mitogen-activated protein kinase (MAPK) kinase kinases to the membrane, initiates the activation of Raf, and thus activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Over longer times, two analogous protein kinase cascades, the c-Jun N-terminal kinase and p38-mitogen-activated protein kinase cascades, become activated. As the signals originating from the ET(A) receptor are transmitted through these protein kinase pathways, other signalling molecules become phosphorylated, thus changing their biological activities. For example, ET-1 increases the expression of the c-jun transcription factor gene, and increases abundance and phosphorylation of c-Jun protein. These changes in c-Jun expression and phosphorylation are likely to be important in the regulation of gene transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last 10–15 years have seen an expansion in the understanding of the intracellular signalling pathways activated in cardiac myocytes in response to hypertrophic or lethal stimuli. The mitogen-activated protein kinases (MAPKs) were identified as potential key mediators of cardiac myocyte responses in the early to mid-1990's, with the extracellular signal-regulated kinases 1/2 (ERK1/2) being potently activated by heterotrimeric Gq protein-coupled receptor (GqPCR) agonists, and the c-Jun N-terminal kinases (JNKs) and p38-MAPKs being potently activated by cell stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although many studies have explored the stimuli which promote hypertrophic growth or death in cardiac myocytes and the signaling pathways which they activate, the mechanisms by which these pathways promote the pathophysiological responses are still obscure. The mitogen-activated protein kinase (MAPK) cascades (in which MAPKs are phosphorylated and activated by upstream MAPK kinases [MKKs] which are, in turn, phosphorylated and activated by MKK kinases [MKKKs]) were identified in the early- to mid-1990s as potentially key regulatory pathways in cardiac myocyte pathophysiology.1,2 The principal MAPKs investigated in cardiac myocytes are the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. ERK1/2 are potently activated by hypertrophic stimuli, whereas JNKs and p38-MAPKs are potently activated by cellular stresses (eg, oxidative stress). However, there is cross-talk such that JNKs and p38-MAPKs are activated by hypertrophic stimuli and ERK1/2 are activated by cellular stresses, and the contribution of each pathway to the overall cardiac myocyte response is not entirely clear. MAPKs phosphorylate a number of known transcription factors to alter their transactivating activities thus, presumably, influencing gene expression to elicit the cellular response.3 Nevertheless, the immediate consequences (ie, the transcription factors which are phosphorylated) and downstream consequences (ie, genes with altered expression) of MAPK signaling in the heart or specifically in cardiac myocytes are still largely unknown. To start to address this issue for the p38-MAPK pathway in the (rat) heart (Figure), Tenhunen et al4 directly injected adenoviruses encoding wild-type (WT) p38-MAPKα together …

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both acute (24 h) and chronic (10–20 week) exposure of human fibroblast cells to low dose sodium arsenite (As(III)) significantly affects activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) DNA binding activity. Short-term treatment with 0.1–5 μM As(III) up-regulates expression of c-Fos and c-Jun and the redox regulators, thioredoxin (Trx) and Redox factor-1 (Ref-1) and activates both AP-1 and NF-κB binding. Chronic exposure to 0.1 or 0.5 μM As(III) decreased c-Jun, c-Fos and Ref-1 protein levels and AP-1 and NF-κB binding activity, but increased Trx expression. Short term exposure to phorbol 12-myristate 13-acetate (TPA), a phorbol ester tumour promoter, or hydrogen peroxide (H2O2) also activates AP-1 and NF-κB binding. However, pre-treatment with As(III) prevents this increase. These results suggest that As(III) may alter AP-1 and NF-κB activity, in part, by up-regulating Trx and Ref-1. The different effects of short- versus long-term As(III) treatment on acute-phase response to oxidative stress reflect changes in the expression of Ref-1, c-Fos and c-Jun, but not Trx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the effect of glycogen availability and contraction on intracellular signaling and IL-6 gene transcription, eight males performed 60 min of exercise on two occasions: either with prior ingestion of a normal (Con) or low carbohydrate (LCHO) diet that reduced pre-exercise muscle glycogen content. Muscle biopsies were obtained and analyzed for IL-6 mRNA. In addition, nuclear proteins were isolated from the samples and analyzed for the mitogen- activated protein kinases (MAPK) c-jun amino-terminal kinase (JNK) 1 and 2 and p38 MAPK. Nuclear fractions were also analyzed for the phosphorylated forms of JNK (p-JNK) and p38 MAPK (p-p38 MAPK) and the abundance of the nuclear transcription factors nuclear factor of activated T cells (NFAT) and nuclear factor kappa-β (NF-κβ). No differences were observed in the protein abundance of total JNK 1/2, p38 MAPK, NFAT, or NF-κβ before exercise, but the nuclear abundance of p-p38 MAPK was higher (P<0.05) in LCHO. Contraction resulted in an increase (P<0.05) in nuclear p-JNK 1/2, but there were no differences when comparing CON with LCHO. The fold increase in IL-6 mRNA with contraction was potentiated (P<0.05) in LCHO. A correlation between pre-exercise nuclear phosphorylated p38 MAPK and contraction-induced fold increase in IL-6 mRNA was performed, revealing a highly significant correlation (r=0.96; P<0.01). We next incubated L6 myotubes in ionomycin (a compound known to induce IL-6 mRNA) with or without the pyridinylimidazole p38 MAPK inhibitor SB203580. Treatments did not affect total nuclear p38 MAPK, but ionomycin increased (P<0.05) both nuclear p-p38 MAPK and IL-6 mRNA. The addition of SB203580 to ionomycin decreased (P<0.05) nuclear p-p38 MAPK and totally abolished (P<0.05) the ionomycin- induced increase in IL-6 mRNA. These data suggest that reduced carbohydrate intake that results in low intramuscular glycogen leads to phosphorylation of p38 MAPK at the nucleus. Furthermore, phosphorylation of p38 MAPK in the nucleus appears to be an upstream target for IL-6, providing new insights into the regulation of IL-6 gene transcription.