986 resultados para Breast - Ultrasonic imaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perception of operator influences ultrasound image acquisition and processing. Lower costs are attracting new users to medical ultrasound. Anticipating an increase in this trend, we conducted a study to quantify the variability in ultrasonic measurements made by novice users and identify methods to reduce it. We designed a protocol with four presets and trained four new users to scan and manually measure the head circumference of a fetal phantom with an ultrasound scanner. In the first phase, the users followed this protocol in seven distinct sessions. They then received feedback on the quality of the scans from an expert. In the second phase, two of the users repeated the entire protocol aided by visual cues provided to them during scanning. We performed off-line measurements on all the images using a fully automated algorithm capable of measuring the head circumference from fetal phantom images. The ground truth (198.1 +/- 1.6 mm) was based on sixteen scans and measurements made by an expert. Our analysis shows that: (1) the inter-observer variability of manual measurements was 5.5 mm, whereas the inter-observer variability of automated measurements was only 0.6 mm in the first phase (2) consistency of image appearance improved and mean manual measurements was 4-5 mm closer to the ground truth in the second phase (3) automated measurements were more precise, accurate and less sensitive to different presets compared to manual measurements in both phases. Our results show that visual aids and automation can bring more reproducibility to ultrasonic measurements made by new users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ligand glyoxal bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH2) is shown to be a selective fluorescence turn-on sensor for zinc ions (Zn2+). This sensor is easy to synthesize, exhibits excellent sensitivity and selectivity towards Zn2+ over other physiologically relevant cations, and has sub-nanomolar binding affinity. It displays maximum fluorescence response to Zn2+ when the metal/ligand ratio is 1:1 and displays stable fluorescence over a broad pH range. The potential of GTSCH2 to image Zn2+ inside the cell was demonstrated in MCF-7 cells (human breast cancer cell line) by using flow cytometry and confocal fluorescence microscopy. Cell viability studies reveal that the probe is biocompatible and suitable for cellular applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new benzoyl hydrazone based chemosensor R is synthesized by Schiff base condensation of 2,6-diformyl-4-methylphenol and phenyl carbohydrazide and acts as a highly selective fluorescence sensor for Cu2+ and Zn2+ ions in aqueous media. The reaction of R with CuCl2 or ZnCl2 forms the corresponding dimeric dicopper(II) Cu-2(R)(CH3O)-(NO3)](2)(CH3O)(2) (R-Cu2+) and dizinc(1) Zn-2(R)(2)](NO3)(2) (R-Zn2+) complexes, which are characterized, as R, by conventional techniques including single-crystal X-ray analysis. Electronic absorption and fluorescence titration studies of R with different metal cations in a CH3CN/0.02 M HEPES buffer medium (pH = 7.3) show a highly selective binding affinity only toward Cu(2+)and Zn2+ ions even in the presence of other commonly coexisting ions such as Ne+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cd2+, and Hg2+. Quantification of the fluorescence titration analysis shows that the chemosensor R can indicate the presence of Cu2+ and Zn2+ even at very low concentrations of 17.3 and 16.5 ppb, respectively. R-Zn2+ acts as a selective metal-based fluorescent sensor for inorganic pyrophosphate ion (PPi) even in the presence of other common anions such as F-, Cl-, Br-, I-, CH3COO-, CO32-, HCO3-, N-3(-), SO42-, PPi, AMP, ADP, and ATP in an aqueous medium. The propensity of R as a bioimaging fluorescent probe to detect Cu2+ and Zn2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against human cervical (HeLa), breast cancer (MCF7), and noncancer breast epithelial (MCF10a) cells have also been investigated. R-Cu2+ shows better cytotoxicity and sensitivity toward cancer cells over noncancer cells than R and R-Zn2+ under identical conditions, with the appearance of apoptotic bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review is about the development of three-dimensional (3D) ultrasonic medical imaging, how it works, and where its future lies. It assumes knowledge of two-dimensional (2D) ultrasound, which is covered elsewhere in this issue. The three main ways in which 3D ultrasound may be acquired are described: the mechanically swept 3D probe, the 2D transducer array that can acquire intrinsically 3D data, and the freehand 3D ultrasound. This provides an appreciation of the constraints implicit in each of these approaches together with their strengths and weaknesses. Then some of the techniques that are used for processing the 3D data and the way this can lead to information of clinical value are discussed. A table is provided to show the range of clinical applications reported in the literature. Finally, the discussion relating to the technology and its clinical applications to explain why 3D ultrasound has been relatively slow to be adopted in routine clinics is drawn together and the issues that will govern its development in the future explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., Zwiggelaar, R. (2008). A novel breast tissue density classification framework. IEEE Transactions on Information Technology in BioMedicine, 12 (1), 55-65

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.