996 resultados para Brain Structures
Resumo:
Background and aim Ulcerative Colitis (UC) and Crohn’s Disease (CD), collectively labelled as inflammatory bowel disease (IBD), are idiopathic, chronic inflammatory disorder of the bowel with a remitting and relapsing course. IBD are associated to poor emotional functioning and psychological distress. We have investigated the brain involvement in patients with IBD using functional magnetic resonance imaging (fMRI). Materials and methods We developed an emotional visual task to investigate the emotional functioning in 10 UC patients and 10 healthy controls (HC). Furthermore, we have compared the brain stress response between a group of 20 CD patients and a group of 18 HC. Finally, we evaluated potential morphological differences between 18 CD patients and 18 HC in a voxel based morphometry (VBM) study. Results We found brain functional changes in UC patients characterized by decreased activity in the amygdala in response to positive emotional stimuli. Moreover, in CD patients, the brain stress response and habituation to stressful stimuli were significantly different in the medial temporal lobe (including the amygdala and hippocampus), the insula and cerebellum. Finally, in CD patients there were morphological abnormalities in the anterior mid cingulated cortex (aMCC). Conclusion IBD are associated to functional and morphological brain abnormalities. The previous intestinal inflammatory activity in IBD patients might have contributed to determine the functional and morphological changes we found. On the other hand, the dysfunctions of the brain structures we found may influence the course of the disease. Our findings might have clinical implications. The differences in the emotional processing may play a role in the development of psychological disorders in UC patients. Furthermore, in CD patients, the different habituation to stress might contribute to stress related inflammatory exacerbations. Finally, the structural changes in the aMCC might be involved in the pain symptoms associated to the bowel disorder.
On the development of novel cocaine-analogues for in vivo imaging of the dopamine transporter status
Resumo:
The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.
Resumo:
Ökonomische Entscheidungen sind ebenso wie alltägliche Entscheidungen von der Aktivität von Hirnregionen abhängig, die zur Kontrolle verschiedener Teilschritte der Entscheidung beitragen. Aktivierung und Desaktivierung dieser Hirnregionen können mit Hilfe moderner bildgebender Verfahren, wie z.B. der funktionellen Magnet-Resonanz-Tomographie (fMRI) dargestellt werden. Die vorliegende Publikation gibt einen Überblick über das interdisziplinäre wissenschaftliche Arbeitsgebiet der „Neuroökonomie“ – einem jungen Forschungsfeld der Neurowissenschaften. Dieser Überblick ist auf sieben Hauptaspekte ökonomischer und finanzieller Entscheidungen fokusiert: 1. In welcher Weise werden ökonomische Parameter wie Wert und Nutzen einer Belohnung, Gewinn oder Verlust, Risiko und Ungewissheit in spezifischen Hirnregionen abgebildet? 2. In welcher spezifischen Weise tragen anatomisch definierte Areale des Gehirns zum Entscheidungsprozess bei? 3. In welcher Weise sind die Entscheidungsprozesse durch Läsion entscheidungsrelevanter Areale des Gehirns gestört? 4. In welcher Weise sind Hirnregionen, die an den Prozessen der Entscheidung beteiligt sind, miteinander vernetzt, um durch Interaktion die Entscheidung herbeizuführen? 5. In welcher Weise ist der Entscheidungsprozess von Persönlichkeitseigenschaften, von genetischen Variationen neuronaler Funktionen und von physiologischer Regulation, z.B. durch Hormone bestimmt? 6. In welcher Weise hängt der Entscheidungsprozess vom sozialen und kulturellen Umfeld des Entscheiders ab? 7. Auf welche Weise werden bei unvollständiger Information über die Optionen der Entscheidung Heuristiken oder Intuitionen genutzt, und in welcher Weise sind Entscheidungen durch Biases beeinflussbar? Der zentrale Teil dieser Publikation gibt einen zusammenfassenden Überblick (review) über die Ergebnisse neuroökonomischer Studien, die die fMRI-Technik nutzen (bis Juni 2010).
Resumo:
Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.
Resumo:
In Alzheimer's disease (AD) patients, episodic memory impairments are apparent, yet semantic memory difficulties are also observed. While the episodic pathology has been thoroughly studied, the neurophysiological mechanisms of the semantic impairments remain obscure. Semantic dementia (SD) is characterized by isolated semantic memory deficits. The present study aimed to find an early marker of mild AD and SD by employing a semantic priming paradigm during electroencephalogram recordings. Event-related potentials (ERP) of early (P1, N1) and late (N400) word processing stages were obtained to measure semantic memory functions. Separately, baseline cerebral blood flow (CBF) was acquired with arterial spin labeling. Thus, the analysis focused on linear regressions of CBF with ERP topographical similarity indices in order to find the brain structures that showed altered baseline functionality associated with deviant ERPs. All participant groups showed semantic priming in their reaction times. Furthermore, decreased CBF in the temporal lobes was associated with abnormal N400 topography. No significant CBF clusters were found for the early ERPs. Taken together, the neurophysiological results suggested that the automatic spread of activation during semantic word processing was preserved in mild dementia, while controlled access to the words was impaired. These findings suggested that N400-topography alterations might be a potential marker for the detection of early dementia. Such a marker could be beneficial for differential diagnosis due to its low cost and non-invasive application as well as its relationship with semantic memory dysfunctions that are closely associated to the cortical deterioration in regions crucial for semantic word processing.
Resumo:
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.
Resumo:
OBJECTIVE: NoGo-stimuli during a Continuous Performance Test (CPT) activate prefrontal brain structures such as the anterior cingulate gyrus and lead to an anteriorisation of the positive electrical field of the NoGo-P300 relative to the Go-P300, so-called NoGo-anteriorisation (NGA). NGA during CPT is regarded as a neurophysiological standard index for cognitive response control. While it is known that patients with chronic schizophrenia exhibit a significant reduction in NGA, it is unclear whether this also occurs in patients undergoing their first-episode. Thus, the aim of the present study was to determine NGA in a group of patients with first-episode schizophrenia by utilizing a CPT paradigm. METHODS: Eighteen patients with first-episode schizophrenia and 18 matched healthy subjects were investigated electrophysiologically during a cued CPT, and the parameters of the Go- and NoGo-P300 were determined using microstate analysis. Low resolution tomography analysis (LORETA) was used for source determination. RESULTS: Due to a more posterior Go- and a more anterior NoGo-centroid, NGA was greater in patients than in healthy controls. LORETA indicated the same sources for both groups after Go-stimuli, but a more anterior source in patients after NoGo-stimuli. In patients P300-amplitude responses to both Go- and NoGo-stimuli were decreased, and P300-latency to NoGo-stimuli was increased. After the Go-stimuli false reactions and reaction times were increased in patients. CONCLUSIONS: Attention was reduced in patients with first-episode schizophrenia, as indicated by more false reactions, prolongation of reaction time, P300-latencies and by a decrease in P300-amplitude. Significantly however, the NGA and prefrontal LORETA-sources indicate intact prefrontal brain structures in first-episode schizophrenia patients. Previously described changes in this indicator of prefrontal function may be related to a progressive decay in chronic schizophrenia. SIGNIFICANCE: The results support the idea of a possible new biological marker of first episode psychosis, which may be a useful parameter for the longitudinal measurement of changing prefrontal brain function in a single schizophrenia patient.
Resumo:
INTRODUCTION: Substantial heterogeneity remains across studies investigating changes in gray matter in schizophrenia. Differences in methodology, heterogeneous symptom patterns and symptom trajectories may contribute to inconsistent findings. To address this problem, we recently proposed to group patients by symptom dimensions, which map on the language, the limbic and the motor systems. The aim of the present study was to investigate whether patients with prevalent symptoms of emotional dysregulation would show structural neuronal abnormalities in the limbic system. METHOD: 43 right-handed medicated patients with schizophrenia were assessed with the Bern Psychopathology Scale (BPS). The patients and a control group of 34 healthy individuals underwent structural imaging at a 3T MRI scanner. Whole brain voxel-based morphometry (VBM) was compared between patient subgroups with different severity of emotional dysregulation. Group comparisons (comparison between patients with severe emotional dysregulation, patients with mild emotional dysregulation, patients with no emotional dysregulation and healthy controls) were performed using a one way ANOVA and ANCOVA respectively. RESULTS: Patients with severe emotional dysregulation had significantly decreased gray matter density in a large cluster including the right ventral striatum and the head of the caudate compared to patients without emotional dysregulation. Comparing patients with severe emotional dysregulation and healthy controls, several clusters of significant decreased GM density were detected in patients, including the right ventral striatum, head of the caudate, left hippocampus, bilateral thalamus, dorsolateral prefrontal and orbitofrontal cortex. The significant effect in the ventral striatum was lost when patients with and without emotional dysregulation were pooled and compared with controls. DISCUSSION: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network.
Resumo:
Background: Regulation of sleep and sleep-related breathing resides in different brain structures. Vascular lesions can be expected to differ in their consequences on sleep depending on stroke topography. However, studies addressing the differences in sleep and sleep-related breathing depending on stroke topography are scarce. The aim of the present investigation was to compare the sleep and sleep-related breathing of patients with supratentorial versus infratentorial stroke. Methods: This study was part of the prospective multicenter study SAS-CARE-1 (Sleep-Disordered Breathing in Transient Ischemic Attack (TIA)/Ischemic Stroke and Continuous Positive Airway Pressure (CPAP) Treatment Efficacy (SAS-CARE); NCT01097967). We prospectively included 14 patients (13 male, age 66 ± 6 years) with infratentorial lesions and 14 patients (14 male, age 64 ± 7 years) with supratentorial lesions, matched for age and stroke severity. Polysomnography was recorded in all during the acute phase within 9 days after stroke onset and 3 months later. Results: During the acute phase after stroke, patients with infratentorial lesions had significantly more sleep-related breathing disorders than patients with supratentorial lesions with an apnea-hypopnea index >20 observed in 8 (57%) patients with infratentorial stroke and in only 2 (14%) patients with supratentorial stroke. Sleep-related breathing improved from the acute to the subacute phase (3 months), albeit remaining elevated in a significant proportion of subjects. Sleep parameters did not differ between the two patient groups but there was a general improvement of sleep from the acute to the subacute phase which was comparable for both patient groups. Although stroke severity was mild, recovery after 3 months was worse in patients with infratentorial stroke with 12 of 14 patients with supratentorial stroke being symptom free (NIHSS = 0), while this was the case for only 6 of 14 patients with infratentorial stroke. Conclusions: Patients with infratentorial lesions are at an increased risk for sleep-related breathing disorders, which are frequent in this group. Monitoring of sleep-related breathing is therefore especially recommended in patients with infratentorial stroke. Because of the absence of reliable differences in sleep parameters between the two patient groups, polygraphy, with reduced diagnostic costs, rather than polysomnography could be considered. The higher prevalence of sleep-related breathing disorders and the poorer recovery of patients with infratentorial lesions suggest that early treatment interventions should be considered.
Resumo:
Background: Emotion research in neuroscience targets brain structures and processes involved in discrete emotion categories (e.g. anger, fear, sadness) or dimensions (e.g. valence, arousal, approach-avoidance), and usually relies on carefully controlled experimental paradigms with standardized and often simple emotion-eliciting stimuli like e.g. unpleasant pictures. Emotion research in clinical psychology and psychotherapy is often interested in very subtle differences between emotional states, e.g. differences within emotion categories (e.g. assertive, self-protecting vs. rejecting, protesting anger or specific grief vs. global sadness), and/or the biographical, social, situational, or motivational contexts of the emotional experience, which are desired to be minimized in experimental neuroscientific research. Objective: In order to facilitate the experimental and neurophysiological investigation of psychotherapeutically relevant emotional experiences, the present study aims at developing a priming procedure to induce specific, therapeutically and biographically relevant emotional states under controlled experimental conditions. Methodology: N = 50 participants who reported negative feelings towards another close person were randomly assigned to 2 different conditions. They fulfilled 2 different sentence completion tasks that were supposed to prime either ‘therapeutically productive’ or ‘therapeutically unproductive’ emotional states and completed an expressive writing task and several self-report measures of specific emotion-related constructs. The sentence completion task consisted in max. 22 sentence stems drawn from psychotherapy patients’ statements that have been shown to be typical for productive or unproductive therapy sessions. The subjects of the present study completed these sentence stems with regard to their own negative feelings towards the close person. Results: There were a substantial inter-individual variability concerning the number of completed sentences, and significant correlations between number of completed sentences and problem activation in both conditions. No differences were observed in general mood or problem activation between both groups after priming. Descriptively, there were differences between groups concerning emotion regulation aspects. Significant differences between groups in resolution of negative feelings towards the other person were found. Discussion: The results point in the expected direction, however the small sample sizes (after exclusion of several subjects) and low power hinder the detection of convincing significant effects. More data is needed in order to evaluate the efficacy of this emotional priming procedure.
Resumo:
AB A fundamental capacity of the human brain is to learn relations (contingencies) between environmental stimuli and the consequences of their occurrence. Some contingencies are probabilistic; that is, they predict an event in some situations but not in all. Animal studies suggest that damage to limbic structures or the prefrontal cortex may disturb probabilistic learning. The authors studied the learning of probabilistic contingencies in amnesic patients with limbic lesions, patients with prefrontal cortex damage, and healthy controls. Across 120 trials, participants learned contingent relations between spatial sequences and a button press. Amnesic patients had learning comparable to that of control subjects but failed to indicate what they had learned. Across the last 60 trials, amnesic patients and control subjects learned to avoid a noncontingent choice better than frontal patients. These results indicate that probabilistic learning does not depend on the brain structures supporting declarative memory.
Resumo:
Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450 - 650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis (LORETA) suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas.
Resumo:
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.
Resumo:
One of the most challenging problems that must be solved by any theoretical model purporting to explain the competence of the human brain for relational tasks is the one related with the analysis and representation of the internal structure in an extended spatial layout of múltiple objects. In this way, some of the problems are related with specific aims as how can we extract and represent spatial relationships among objects, how can we represent the movement of a selected object and so on. The main objective of this paper is the study of some plausible brain structures that can provide answers in these problems. Moreover, in order to achieve a more concrete knowledge, our study will be focused on the response of the retinal layers for optical information processing and how this information can be processed in the first cortex layers. The model to be reported is just a first trial and some major additions are needed to complete the whole vision process.
Resumo:
In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.