904 resultados para Box-Jenkins forecasting
Resumo:
The design of anchorage blisters of internal continuity post-tensioning tendons of bridges built by the cantilever method, presents some peculiarities, not only because they are intermediate anchorages but also because these anchorages are located in blisters, so the prestressing force has to be transferred from the blister the bottom slab and web of the girder. The high density of steel reinforcement in anchorage blisters is the most common reason for problems with concrete cast in situ, resulting in zones with low concrete compacity, leading to concrete crushing failures under the anchor plates. A solution may involve improving the concrete compression and tensile strength. To meet these requirements a high-performance fibre reinforced self-compacting mix- ture (HPFRC) was used in anchorage corner blisters of post-tensioning tendons, reducing the concrete cross-section and decreasing the reinforcement needed. To assess the ultimate capacity and the adequate serviceability of the local anchorage zone after reducing the minimum concrete cross-section and the confining reinforcement, specified by the anchorage device supplier for the particular tendon, load transfer tests were performed. To investigate the behaviour of anchorage blisters regarding the transmission of stresses to the web and the bottom slab of the girder, and the feasibility of using high performance concrete only in the blister, two half scale models of the inferior corner of a box girder existing bridge were studied: a reference specimen of ordinary reinforced concrete and a HPFRC blister specimen. The design of the reinforcement was based in the tensile forces obtained on strut-and-tie models. An experimental program was carried out to assess the models used in design and to study the feasibility of using high performance concrete only in the blister, either with casting in situ, or with precast solutions. A non-linear finite element analysis of the tested specimens was also performed and the results compared.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
Publicado em "AIP Conference Proceedings", Vol. 1648
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2012
Resumo:
The article provides a method for long-term forecast of frame alignment losses based on the bit-error rate monitoring for structure-agnostic circuit emulation service over Ethernet in a mobile backhaul network. The developed method with corresponding algorithm allows to detect instants of probable frame alignment losses in a long term perspective in order to give engineering personnel extra time to take some measures aimed at losses prevention. Moreover, long-term forecast of frame alignment losses allows to make a decision about the volume of TDM data encapsulated into a circuit emulation frame in order to increase utilization of the emulated circuit. The developed long-term forecast method formalized with the corresponding algorithm is recognized as cognitive and can act as a part of network predictive monitoring system.
Resumo:
v.37:no.1(1977)
Resumo:
v.37:no.4(1977)
Resumo:
This paper evaluates the forecasting performance of a continuous stochastic volatility model with two factors of volatility (SV2F) and compares it to those of GARCH and ARFIMA models. The empirical results show that the volatility forecasting ability of the SV2F model is better than that of the GARCH and ARFIMA models, especially when volatility seems to change pattern. We use ex-post volatility as a proxy of the realized volatility obtained from intraday data and the forecasts from the SV2F are calculated using the reprojection technique proposed by Gallant and Tauchen (1998).
Resumo:
L’objectiu d’aquest projecte és la comparació, des del punt de vista ambiental, de l’envasat del vi mitjançant ampolles de vidre i mitjançant el sistema “Bag-in-Box” reutilitzable.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Resumo:
In an effort to meet its obligations under the Kyoto Protocol, in 2005 the European Union introduced a cap-and-trade scheme where mandated installations are allocated permits to emit CO2. Financial markets have developed that allow companies to trade these carbon permits. For the EU to achieve reductions in CO2 emissions at a minimum cost, it is necessary that companies make appropriate investments and policymakers design optimal policies. In an effort to clarify the workings of the carbon market, several recent papers have attempted to statistically model it. However, the European carbon market (EU ETS) has many institutional features that potentially impact on daily carbon prices (and associated nancial futures). As a consequence, the carbon market has properties that are quite different from conventional financial assets traded in mature markets. In this paper, we use dynamic model averaging (DMA) in order to forecast in this newly-developing market. DMA is a recently-developed statistical method which has three advantages over conventional approaches. First, it allows the coefficients on the predictors in a forecasting model to change over time. Second, it allows for the entire fore- casting model to change over time. Third, it surmounts statistical problems which arise from the large number of potential predictors that can explain carbon prices. Our empirical results indicate that there are both important policy and statistical bene ts with our approach. Statistically, we present strong evidence that there is substantial turbulence and change in the EU ETS market, and that DMA can model these features and forecast accurately compared to conventional approaches. From a policy perspective, we discuss the relative and changing role of different price drivers in the EU ETS. Finally, we document the forecast performance of DMA and discuss how this relates to the efficiency and maturity of this market.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.