927 resultados para Bovine viral diarrhoea


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus type 5 (BoHV-5) is a major cause of viral meningoencephalitis in cattle. The expression of different viral proteins has been associated with BoHV-5 neuropathogenesis. Among these, gI, gE and US9 have been considered essential for the production of neurological disease in infected animals. To evaluate the role of gI, gE and US9 in neurovirulence, a recombinant from which the respective genes were deleted (BoHV-5 gI-/gE-/US9-) was constructed and inoculated in rabbits of two age groups (four and eight weeks-old). When the recombinant virus was inoculated through the paranasal sinuses of four weeks-old rabbits, neurological disease was observed and death was the outcome in 4 out of 13 (30.7 %) animals, whereas clinical signs and death were observed in 11/13 (84.6%) of rabbits infected with the parental virus. In eight weeks-old rabbits, the BoHV-5 gI-/gE-/US9- did not induce clinically apparent disease and could not be reactivated after dexamethasone administration, whereas wild type BoHV-5 caused disease in 55.5% of the animals and was reactivated. These findings reveal that the simultaneous deletion of gI, gE and US9 genes did reduce but did not completely abolish the neurovirulence of BoHV-5 in rabbits, indicating that other viral genes may also play a role in the induction of neurological disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutant viral strains deleted in non-essential genes represent useful tools to study the function of specific gene products in the biology of the virus. We herein describe an investigation on the phenotype of a bovine herpesvirus 5 (BoHV-5) recombinant deleted in the gene encoding the enzyme thymidine kinase (TK) in rabbits, with special emphasis to neuroinvasiveness and the ability to establish and reactivate latent infection. Rabbits inoculated with the parental virus (SV-507/99) (n=18) at a low titer (10(5.5)TCID50) shed virus in nasal secretions in titers up to 10(4.5)TCID50 for up to 12 days (average: 9.8 days [5-12]) and 5/ 16 developed neurological disease and were euthanized in extremis. Rabbits inoculated with the recombinant BoHV-5TKΔ at a high dose (10(7.1)TCID50) also shed virus in nasal secretions, yet to lower titers (maximum: 10(2.3)TCID50) and for a shorter period (average: 6.6 days [2-11]) and remained healthy. PCR examination of brain sections of inoculated rabbits at day 6 post-infection (pi) revealed a widespread distribution of the parental virus, whereas DNA of the recombinant BoHV-5TKΔ-was detected only in the trigeminal ganglia [TG] and olfactory bulbs [OB]. Nevertheless, during latent infection (52pi), DNA of the recombinant virus was detected in the TGs, OBs and also in other areas of the brain, demonstrating the ability of the virus to invade the brain. Dexamethasone (Dx) administration at day 65 pi was followed by virus reactivation and shedding by 5/8 rabbits inoculated with the parental strain (mean duration of 4.2 days [1 - 9]) and by none of seven rabbits inoculated with the recombinant virus. Again, PCR examination at day 30 post-Dx treatment revealed the presence of latent DNA in the TGs, OBs and in other areas of the brain of both groups. Taken together, these results confirm that the recombinant BoHV-5TKΔ is highly attenuated for rabbits. It shows a reduced ability to replicate in the nose but retains the ability to invade the brain and to establish latent infection. Additional studies are underway to determine the biological and molecular mechanisms underlying the inability of BoHV-5TKΔ to reactivate from latency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of thymidine kinase (tk)-deleted recombinant bovine herpesvirus 5 (BoHV-5tkΔ) to establish and reactivate latent infection was investigated in lambs. During acute infection, the recombinant virus replicated moderately in the nasal mucosa, yet to lower titers than the parental strain. At day 40 post-infection (pi), latent viral DNA was detected in trigeminal ganglia (TG) of all lambs in both groups. However, the amount of recombinant viral DNA in TGs was lower (9.7-fold less) than that of the parental virus as determined by quantitative real time PCR. Thus, tk deletion had no apparent effect on the frequency of latent infection but reduced colonization of TG. Upon dexamethasone (Dx) administration at day 40 pi, lambs inoculated with parental virus shed infectious virus in nasal secretions, contrasting with lack of infectivity in secretions of lambs inoculated with the recombinant virus. Nevertheless, some nasal swabs from the recombinant virus group were positive for viral DNA by PCR, indicating low levels of reactivation. Thus, BoHV-5 TK activity is not required for establishment of latency, but seems critical for efficient virus reactivation upon Dx treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thymidine kinase (tk)-deleted bovine herpesvirus 5 (BoHV-5tkΔ) was previously shown to establish latent infection and reactivate - even poorly - in a sheep model (Cadore et al. 2013). As TK-negative alphaherpesviruses are unlike to reactivate in neural tissue, this study investigated the sites of latency and reactivation by this recombinant in lambs. For this, groups of lambs were inoculated intranasally with the parental BoHV-5 strain (SV-507/99) or with the recombinant BoHV-5tkΔ. During latent infection (40 days post-inoculation, pi), the distribution of recombinant virus DNA in neural and non-neural tissues was similar to that of the parental virus. Parental and recombinant virus DNA was consistently detected by PCR in trigeminal ganglia (TGs); frequently in palatine and pharyngeal tonsils and, less frequently in the retropharyngeal lymph nodes. In addition, latent DNA of both viruses was detected in several areas of the brain. After dexamethasone (Dx) administration (day 40pi), the recombinant virus was barely detected in nasal secretions contrasting with marked shedding of the parental virus. In tissues of lambs euthanized at day 3 post-Dx treatment (pDx), reverse-transcription-PCR (RT-PCR) for a late viral mRNA (glycoprotein D gene) demonstrated reactivation of parental virus in neural (TGs) and lymphoid tissues (tonsils, lymph node). In contrast, recombinant virus mRNA was detected only in lymphoid tissues. These results demonstrate that BoHV-5 and the recombinant BoHV-5tkΔ do establish latent infection in neural and non-neural sites. Reactivation of the recombinant BoHV-5tkΔ, however, appeared to occur only in non-neural sites. In anyway, the ability of a tk-deleted strain to reactivate latent infection deserves attention in the context of vaccine safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the method described here is to remove hemoglobin, the major contaminant in the bovine plasma obtained from slaughterhouses, by adding a mixture of 19% cold ethanol and 0.6% chloroform, followed by fibrinogen and globulin precipitation by the Cohn method and nonspecific hemagglutinin by thermocoagulation. The experimental volume of bovine plasma was 2,000 ml per batch. Final purification was performed by liquid chromatography using the ion-exchange gel DEAE-Sepharose FF. The bovine albumin thus obtained presented > or = 99% purity, a yield of 25.0 ± 1.2 g/l plasma and >71.5% recovery. N-acetyl-DL-tryptophan (0.04 mmol/g protein) and sodium caprylate (0.04 mmol/g protein) were used as stabilizers and the final concentration of albumin was adjusted to 22.0% (w/v), pH 7.2 to 7.3. Viral inactivation was performed by pasteurization for 10 h at 60°C. The bovine albumin for the hemagglutination tests used in immunohematology was submitted to chemical treatment with 0.06% (w/v) glutaraldehyde and 0.1% (w/v) formaldehyde at 37°C for 12 h to obtain polymerization. A change in molecular distribution was observed after this treatment, with average contents of 56.0% monomers, 23.6% dimers, 12.2% trimers and 8.2% polymers. The tests performed demonstrated that this polymerized albumin enhances the agglutination of Rho(D)-positive red cells by anti-Rho(D) serum, permitting and improving visualization of the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigens of a bovine herpesvirus type 5 (BHV-5), isolated from a cow with a neurological infection in Rio Grande do Sul State, Brazil, were used to immunize BALB/c mice to produce monoclonal antibodies (mAbs). Eleven hybridomas secreting mAbs directed at BHV-5 antigens were obtained after two fusions and screening of 356 hypoxanthine-aminopterin-thymidine-resistant clones. The mAbs reacted at dilutions up to 1:500 (hybridoma culture supernatant) and up to >1:10,000 (ascitic fluid) in an indirect fluorescent antibody assay (IFA) and in immunoperoxidase staining of BHV-5-infected cells. Four mAbs (1D12, 2E2, 2G10 and 4E4) showed virus-neutralizing activity against the parental BHV-5 isolate. Five mAbs (1F3, 2A6, 2F9, 2G10 and HB24L) reacted in Western immunoblotting with a protein of approximately 90 kDa. Three other mAbs (2E2, 3D6 and 4E4) reacted in IFA with antigens of a BHV-1 mutant glycoprotein C- negative strain, demonstrating that they are directed at a viral antigen other than glycoprotein C. The eleven mAbs tested reacted with 20 BHV-5 field isolates and nine mAbs reacted with 10 BHV-1 isolates. Two mAbs (1F3 and 2F9) failed to react with BHV-1 field isolates, although they displayed a weak and nonreproducible reaction with the BHV-1 reference strain Los Angeles. These mAbs may be very useful in distinguishing between BHV-1 and BHV-5 infections since most of the traditional reagents and techniques are unable to do so. One mAb (2F9) was shown to bind to viral antigens by immunohistochemistry of histological sections of the brain of a BHV-5-infected calf. These results demonstrate that the mAbs produced here are suitable for use in a variety of immunological techniques and therefore may be useful for diagnostic and research purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine coronavirus (BCoV) causes severe diarrhea in newborn calves, is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. The BCoV S protein plays a fundamental role in viral attachment and entry into the host cell, and is cleaved into two subunits termed S1 (amino terminal) and S2 (carboxy terminal). The present study describes a strategy for the sequencing of the BCoV S1 gene directly from fecal diarrheic specimens that were previously identified as BCoV positive by RT-PCR assay for N gene detection. A consensus sequence of 2681 nucleotides was obtained through direct sequencing of seven overlapping PCR fragments of the S gene. The samples did not undergo cell culture passage prior to PCR amplification and sequencing. The structural analysis was based on the genomic differences between Brazilian strains and other known BCoV from different geographical regions. The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity for amino acids) and more similar to the BCoV-ENT strain (98.7% for nucleotides and 98.7% for amino acids). Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, these strains clustered with the American (BCoV-ENT, 182NS) and Canadian (BCQ20, BCQ2070, BCQ9, BCQ571, BCQ1523) calf diarrhea and the Canadian winter dysentery (BCQ7373, BCQ2590) strains, but clustered on a separate branch of the Korean and respiratory BCoV strains. The BCoV strains of the present study were not clustered in the same branch of previously published Brazilian strains (AY606193, AY606194). These data agree with the genealogical construction and suggest that at least two different BCoV strains are circulating in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEΔ), thymidine kinase (BoHV-5TKΔ) and both proteins (BoHV-5gEΔTKΔ). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEΔ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKΔ (N = 8) or BoHV-5gEΔTKΔ (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKΔ and BoHV-5gEΔTKΔ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic similarities, but exhibit marked differences in tissue tropism and neurovirulence. The amino-terminal region of glycoprotein C (gC), which is markedly different in each of the viruses, is involved in virus binding to cellular receptors and in interactions with the immune system. This study investigated the genetic and antigenic differences of the 5′ region of the gC (5′ gC) gene (amino-terminal) of South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374 nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3% between gC1 and gC5. Differences included the absence of 40 amino acid residues (27 encompassing predicted linear epitopes) scattered throughout 5′ gC1 compared to 5′ gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each isolate revealed a high degree of cross-neutralization between the viruses, yet some isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5 isolates reacted weakly with either sera. The virus neutralization differences observed within the same viral species, and more pronounced between BoHV-1 and BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results demonstrate that the 5′ gC region is well conserved within each viral species but is divergent between BoHV-1 and BoHV-5, likely contributing to their biological and antigenic differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bovine herpesvirus 1 (BoHV-1) defective in glycoprotein E (gE) was constructed from a Brazilian genital BoHV-1 isolate, by replacing the full gE coding region with the green fluorescent protein (GFP) gene for selection. Upon co-transfection of MDBK cells with genomic viral DNA plus the GFP-bearing gE-deletion plasmid, three fluorescent recombinant clones were obtained out of approximately 5000 viral plaques. Deletion of the gE gene and the presence of the GFP marker in the genome of recombinant viruses were confirmed by PCR. Despite forming smaller plaques, the BoHV-1△gE recombinants replicated in MDBK cells with similar kinetics and to similar titers to that of the parental virus (SV56/90), demonstrating that the gE deletion had no deleterious effects on replication efficacy in vitro. Thirteen calves inoculated intramuscularly with BoHV-1△gE developed virus neutralizing antibodies at day 42 post-infection (titers from 2 to 16), demonstrating the ability of the recombinant to replicate and to induce a serological response in vivo. Furthermore, the serological response induced by recombinant BoHV-1△gE could be differentiated from that induced by wild-type BoHV-1 by the use of an anti-gE antibody ELISA kit. Taken together, these results indicated the potential application of recombinant BoHV-1 △gE in vaccine formulations to prevent the losses caused by BoHV-1 infections while allowing for differentiation of vaccinated from naturally infected animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.