990 resultados para Boundary Integral Equation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In solid mechanics the weak formulation produces an integral equation ready for a discretization and with less restrictive requiremets than the standard field equations. Fundamentally the weak formulation is a expresion of a green formula. An alternative is to choose another green formula materializing a reciprocity relationship between the basis unknowns and an auxiliary family of functions. The degree of smoothness requiered to practice the discretization is then translated to the auxiliar functions. The subsequent discretization (constant, linear etc.)produces a set of equations on the boundary of the domain. For linear 3-D problems the BIEM appears then as a powerful alternative to FEM, because of the reduction to 2-D thanks to the features previously described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the novel experimental measures presented in this paper is to show the improvement achieved in the computation time for a 2D self-adaptive hp finite element method (FEM) software accelerated through the Adaptive Cross Approximation (ACA) method. This algebraic method (ACA) was presented in an previous paper in the hp context for the analysis of open region problems, where the robust behaviour, good accuracy and high compression levels of ACA were demonstrated. The truncation of the infinite domain is settled through an iterative computation of the Integral Equation (IE) over a ficticious boundary, which, regardless its accuracy and efficiency, turns out to be the bottelneck of the code. It will be shown that in this context ACA reduces drastically the computational effort of the problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A05, 44A35

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 45DB05, 45E05, 78A45

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new excitation model for the numerical solution of field integral equation (EFIE) applied to arbitrarily shaped monopole antennas fed by coaxial lines is presented. This model yields a stable solution for the input impedance of such antennas with very low numerical complexity and without the convergence and high parasitic capacitance problems associated with the usual delta gap excitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.