928 resultados para Boundary Inhomogeneity Method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

数值模式是潮波研究的一种有利手段,但在研究中会面临各种具体问题,包括开边界条件的确定、底摩擦系数和耗散系数的选取等。数据同化是解决这些问题的一种途径,即利用有限数量的潮汐观测资料对潮波进行最优估计,其根本目的是迫使模型预报值逼近观测值,使模式不要偏离实际情况太远。本文采用了一种优化开边界方法,沿着数值模型的开边界优化潮汐水位信息,目的是设法使数值解在动力约束的意义下接近观测值,获得研究区域的潮汐结果。边界值由指定优化问题的解来定,以提高模拟区域的潮汐精度,最优问题的解是基于通过开边界的能量通量的变化,处理开边界处的观测值与计算值之差的最小化。这里提供了辐射型边界条件,由Reid 和Bodine(本文简称为RB)推导,我们将采用的优化后的RB方法(称为ORB)是优化开边界的特殊情况。 本文对理想矩形海域( E- E, N- N, 分辨率 )进行了潮波模拟,有东部开边界,模式采用ECOM3D模式。对数据结果的误差分析采用,振幅平均偏差,平均绝对偏差,平均相对误差和均方根偏差四个值来衡量模拟结果的好坏程度。 需要优化入开边界的解析潮汐值本文采用的解析解由方国洪《海湾的潮汐与潮流》(1966年)方法提供,为验证本文所做的解析解和方文的一致,本文做了其第一个例子的关键值a,b,z,结果与其结果吻合的相当好。但略有差别,分析的可能原因是两法在具体迭代方案和计算机保留小数上有区别造成微小误差。另外,我们取m=20,得到更精确的数值,我们发现对前十项的各项参数值,取m=10,m=20各项参数略有改进。当然我们可以获得m更大的各项参数值。 同时为了检验解析解的正确性讨论m和l变化对边界值的影响,结果指出,增大m,m=20时,u的模最大在本身u1或u2的模的6%;m=100时,u的模最大在本身u1或u2的模的4%;m再增大,m=1000时,u的模最大在本身u1或u2的模的4%,改变不大。当l<1时, =0处u的模最大为2。当l=1时, =0处u的模最大为0.1,当l>1时,l越大,u的模越小,当l=10时,u的模最大为0.001,可以认为为0。 为检验该优化方法的应用情况,我们对理想矩形区域进行模拟,首先将本文所采用的优化开边界方法应用于30m的情况,在开边界优化入开边界得出模式解,所得模拟结果与解析解吻合得相当好,该模式解和解析解在整个区域上,振幅平均绝对偏差为9.9cm,相位平均绝对偏差只有4.0 ,均方根偏差只有13.3cm,说明该优化方法在潮波模型中有效。 为验证该优化方法在各种条件下的模拟结果情况,在下面我们做了三类敏感性试验: 第一类试验:为证明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,我们来比较ORB条件与RB条件的优劣,我们模拟用了两个不同的摩擦系数,k分别为:0,0.00006。 结果显示,针对不同摩擦系数,显示在开边界上使用ORB条件的解比使用RB条件的解无论是振幅还是相位都有显著改善,两个试验均方根偏差优化程度分别为84.3%,83.7%。说明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,大大提高了模拟水平。上述的两个试验得出, k=0.00006优化结果比k=0的好。 第二类试验,使用ORB条件确定优化开边界情况下,在东西边界加入出入流的情况,流考虑线性和非线性情况,结果显示,加入流的情况,潮汐模拟的效果降低不少,流为1Sv的情况要比5Sv的情况均方根偏差相差20cm,而不加流的情况只有0.2cm。线性流和非线性流情况两者模式解相差不大,振幅,相位各项指数都相近, 说明流的线性与否对结果影响不大。 第三类试验,不仅在开边界使用ORB条件,在模式内部也使用ORB条件,比较了内部优化和不优化情况与解析解的偏差。结果显示,选用不同的k,振幅都能得到很好的模拟,而相位相对较差。另外,在内部优化的情况下,考虑不同的k的模式解, 我们选用了与解析解相近的6个模式解的k,结果显示,不同的k,振幅都能得到很好的模拟,而相位较差。 总之,在开边界使用ORB条件比使用RB条件好,振幅相位都有大幅度改进,在加入出入流情况下,流的大小对模拟结果有影响,但线形流和非线性流差别不大。内部优化的结果显示,模式采用不同的k都能很好模拟解析解的振幅。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着人们对能源需求的不断增加,深海海洋油气开发已引起了人们越来越大的兴趣,随之而来的是对海洋构筑物的设计和防护提出了更高的要求。由于在传统的阴极保护工程设计中,大多采用实际测量或经验估计的方法来掌握电位分布规律,很难真实的反映构筑物的实际状态,为了确保安全,往往采用较大的安全系数,不但会造成金属材料的浪费,而且还会在构筑物的局部造成保护不足或过保护。 本文研究了边界元方法(BEM)利用数值仿真技术对阴极保护状态下的海洋构筑物的保护状态进行模拟,从而获得阴极保护状态下的金属材料的电位分布。采用常数单元对于二维问题进行了研究,推导出了边界积分方程的离散化形式,并结合阴极保护环境下的阳极和阴极的极化曲线作为边界条件,建立了线性方程组。采用Newton-Raphson 迭代法和分段拟线性化的方法对边界条件做了线性化处理,应用FORTRAN语言开发出阴极保护的边界元仿真求解程序CPBEM,并利用该程序选择合适的算例进行了验证,结果表明该程序是有效和可行的。 通过管线钢在不同温度海泥埋片的腐蚀失重实验,证明了如果有充足的氧的供给的情况下,温度每增加10oC,腐蚀速度便增加一倍。阴极保护系统数值仿真的精确度最主要的影响因素就是阴极和阳极的极化曲线。而金属材料的极化曲线往往受到多种环境因素的影响,本文系统的讨论了在海泥介质中两种管线钢的腐蚀行为,对管线钢极化行为产生影响的各种环境因素,以及这些因素与金属的腐蚀速度之间的关系。首次将灰关联分析的手段运用到海泥介质的腐蚀,研究了环境因素对于ERW,SML两种管线钢在海泥中的腐蚀速率的影响。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We begin our studies to make the best of information of seismic data and carry out the description of cracks parameters by extracting anisotropic information. The researching contents are: (1) velocity and polarization anomaly of seismic wave (qP and qSV wave) in weak anisotropic media; (2) reflection seismic synthetic record in anisotropic media; (3) multiple scattering induced by cracks; (4) anisotropic structure inversion and velocity reconstruction with VSP (Vertical Seismic Profile) data; (5) multi-parameters analysis of anisotropy in time-domain and depth-domain. Then we obtain results as follows: (1) We achieve approximate relation of qP and qSV wave's velocity and polarization property in weak anisotropic media. At the same time, we calculate anisotropic velocity factors and polarization anomaly of several typical sedimentary rocks. The results show there are different anisotropic velocity factors and polarization anomaly in different rocks. It is one of the primary theoretical foundation which is expected to identify lithology; (2) We calculate reflection seismic synthetic record with theoretical model; (3) We simulate scattering induced by cracks with Boundary Element Method. Numerical studies show that in the presence of cracks; spatial and scale-length distributions are important and cannot be ignored in modeling cracked solids; (4) From traveltimes information of VSP data, we study the velocity parameter inversion of seismic wave under isotropic and anisotropic models, and its result indicate that the inversion imaging under anisotropic model will not destroy the original features of isotropic model, but it will bring on some bigger error if we adopt the method of isotropic model for anisotropic model data. Further more, basing on the study we develop the CDP mapping technology of reflecting structure under isotropic and anisotropic models, and we process real data as a trial of the methods; (5) We study the problem of initial model reconstruction of anisotropic parameters structure represented by Anderson parameter in depth domain for surface data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This special-topic volume reports on new progress made in the analysis and understanding of fracture and damage mechanics. The Finite Element Method is a well-established analytical tool for theoretical fracture analysis. The development of interface elements which combine aspects of both fracture and damage mechanics has permitted the prediction of both crack initiation and propagation. A number of the papers presented here deal with their use and further development.Substantial progress has also been made in the use of the Boundary Element Method for treating crack problems. The inherent mathematical complexity of this method has resulted in somewhat slower progress than that enjoyed by the Finite Element Method and is still the focus of much research. The volume also presents a number of contributions arising from this field. A topic which is closely related to the study of fracture is structural repair. Although repairs are usually effected after fracture occurs, the structural analyst must still ensure that the repair itself is not prone to cracking or other forms of damage. Two approaches to the study of damage in a repaired structure are described in this special volume. These three aspects, taken together, ensure that even the expert will learn something new from this book.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During extreme sea states so called impact events can be observed on the wave energy converter Oyster. In small scale experimental tests these impact events cause high frequency signals in the measured load which decrease confidence in the data obtained. These loads depend on the structural dynamics of the model. Amplification of the loads can occur and is transferred through the structure from the point of impact to the load cell located in the foundation. Since the determination of design data and load cases for Wave Energy Converters originate from scale experiments, this lack of confidence has a direct effect on the development.

Numerical vibration analysis is a valuable tool in the research of the structural load response of Oyster to impact events, but must take into account the effect of the surrounding water. This can be done efficiently by adding an added mass distribution, computed with a linearised potential boundary element method. This paper presents the development and validation of a numerical procedure, which couples the OpenSource boundary element code NEMOH with the Finite Element Analysis tool CodeAster. Numerical results of the natural frequencies and mode shapes of the structure under the influence of added mass due to specific structural modes are compared with experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We estimated the detonation depth and net explosive weight for a very shallow underwater explosion using cutoff frequencies and spectral analysis. With detonation depth and a bubble pulse the net explosive weight for a shallow underwater explosion could simply be determined. The ray trace modeling confirms the detonation depth as a source of the hydroacoustic wave propagation in a shallow channel. We found cutoff frequencies of the reflection off the ocean bottom to be 8.5 Hz, 25 Hz, and 43 Hz while the cutoff frequency of the reflection off the free surface to be 45 Hz including 1.01 Hz for the bubble pulse, and also found the cutoff frequency of surface reflection to well fit the ray-trace modeling. We also attempted to corroborate our findings using a 3D bubble shape modeling and boundary element method. Our findings led us to the net explosive weight of the underwater explosion offshore of Baengnyeong-do for the ROKS Cheonan sinking to be approximately 136 kg TNT at a depth of about 8 m within an ocean depth of around 44 m. © 2015 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.