982 resultados para Boson-fermion correspondence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeVand also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are epsilon and b(epsilon), and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found epsilon greater than or similar to 0.01 GeV and b epsilon similar to 1 GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (m(L)) and CP-odd Higgs boson mass (mA). We have estimated that m(L) greater than or similar to 300 GeV and m(A) greater than or similar to 700 GeV. We have also commented on the allowed values of epsilon and b(epsilon), in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of epsilon and b(epsilon).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider supersymmetric models in which the lightest Higgs scalar can decay invisibly consistent with the constraints on the 126 GeV state discovered at the CERN LHC. We consider the invisible decay in the minimal supersymmetric standard model (MSSM), as well its extension containing an additional chiral singlet superfield, the so-called next-to-minimal or nonminimal supersymmetric standard model (NMSSM). We consider the case of MSSM with both universal as well as nonuniversal gaugino masses at the grand unified scale, and find that only an E-6 grand unified model with unnaturally large representation can give rise to sufficiently light neutralinos which can possibly lead to the invisible decay h(0) -> (chi) over tilde (0)(1)(chi) over tilde (0)(1). Following this, we consider the case of NMSSM in detail, where we also find that it is not possible to have the invisible decay of the lightest Higgs scalar with universal gaugino masses at the grand unified scale. We delineate the regions of the NMSSM parameter space where it is possible for the lightest Higgs boson to have a mass of about 126 GeV, and then concentrate on the region where this Higgs can decay into light neutralinos, with the soft gaugino masses M-1 and M-2 as two independent parameters, unconstrained by grand unification. We also consider, simultaneously, the other important invisible Higgs decay channel in the NMSSM, namely the decay into the lightest CP-odd scalars, h(1) -> a(1)a(1), which is studied in detail. With the invisible Higgs branching ratio being constrained by the present LHC results, we find that mu(eff) < 170 GeV and M-1 < 80 GeV are disfavored in NMSSM for fixed values of the other input parameters. The dependence of our results on the parameters of NMSSM is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and time scale for formation of a bound state agree at the correspondence point. The time scale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the generation of synthetic gauge fields in cold atomic systems have stimulated interest in the physics of interacting bosons and fermions in them. In this paper, we discuss interacting two-component fermionic systems in uniform non-Abelian gauge fields that produce a spin-orbit interaction and uniform spin potentials. Two classes of gauge fields discussed include those that produce a Rashba spin-orbit interaction and the type of gauge fields (SM gauge fields) obtained in experiments by the Shanxi and MIT groups. For high symmetry Rashba gauge fields, a two-particle bound state exists even for a vanishingly small attractive interaction described by a scattering length. Upon increasing the strength of a Rashba gauge field, a finite density of weakly interacting fermions undergoes a crossover from a BCS like ground state to a BEC state of a new kind of boson called the rashbon whose properties are determined solely by the gauge field and not by the interaction between the fermions. The rashbon Bose-Einstein condensate (RBEC) is a quite intriguing state with the rashbon-rashbon interactions being independent of the fermion-fermion interactions (scattering length). Furthermore, we show that the RBEC has a transition temperature of the order of the Fermi temperature, suggesting routes to enhance the transition temperatures of weakly interacting superfluids by tuning the spin-orbit coupling. For the SM gauge fields, we show that in a regime of parameters, a pair of particles with finite centre-of-mass momentum is the most strongly bound. In other regimes of centre-of-mass momenta, there is no two-body bound state, but a resonance like feature appears in the scattering continuum. In the many-body setting, this results in flow enhanced pairing. Also, strongly interacting normal states utilizing the scattering resonance can be created opening the possibility of studying properties of helical Fermi liquids. This paper contains a general discussion of the physics of Feshbach resonance in a non-Abelian gauge field, where several novel features such as centre-of-mass-momentum-dependent effective interactions are shown. It is also shown that a uniform non-Abelian gauge field in conjunction with a spatial potential can be used to generate novel Hamiltonians; we discuss an explicit example of the generation of a monopole Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the spin and the parity quantum numbers of the recently discovered Higgs-like boson at the LHC is a matter of great importance. In this Letter, we consider the possibility of using the kinematics of the tagging jets in Higgs production via the vector boson fusion (VBF) process to test the tensor structure of the Higgs-vector boson (HVV) interaction and to determine the spin and CP properties of the observed resonance. We show that an anomalous HVV vertex, in particular its explicit momentum dependence, drastically affects the rapidity between the two scattered quarks and their transverse momenta and, hence, the acceptance of the kinematical cuts that allow to select the VBF topology. The sensitivity of these observables to different spin-parity assignments, including the dependence on the LHC center of mass energy, are evaluated. In addition, we show that in associated Higgs production with a vector boson some kinematical variables, such as the invariant mass of the system and the transverse momenta of the two bosons and their separation in rapidity, are also sensitive to the spin-parity assignments of the Higgs-like boson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analytically evaluate the Renyi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Renyi entropies S-n are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel theta function associated with the A(n-1) lattice. We then study the Renyi entropies in the decompactification regime. We show that in the limit when the size of the interval becomes the size of the spatial circle, the entanglement entropy reduces to the thermal entropy of free bosons on a circle. We then set up a systematic high temperature expansion of the Renyi entropies and evaluate the finite size corrections for free bosons. Finally we compare these finite size corrections both for the free boson CFT and the free fermion CFT with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces as its boundary. One-loop corrections in these geometries are entirely determined by quantum numbers of the excitations present in the bulk. This implies that the leading finite size corrections contributions from one-loop determinants of the Chern-Simons gauge field and the Dirac field in the dual geometry should reproduce that of the free boson and the free fermion CFT respectively. By evaluating these corrections both in the bulk and in the CFT explicitly we show that this expectation is indeed true.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential mu for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in mu in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, R) x SL(3, R) Chern-Simons theory. Our result suggests that the order mu(2) correction to the entanglement entropy may be universal for W-algebra CFTs with spin-three chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the possibility that the heavier CP-even Higgs boson (H-0) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h(0)), which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.