955 resultados para Boolean Computations
Resumo:
It is an exciting era for molecular computation because molecular logic gates are being pushed in new directions. The use of sulfur rather than the commonplace nitrogen as the key receptor atom in metal ion sensors is one of these directions; plant cells coming within the jurisdiction of fluorescent molecular thermometers is another, combining photochromism with voltammetry for molecular electronics is yet another. Two-input logic gates benefit from old ideas such as rectifying bilayer electrodes, cyclodextrin-enhanced room-temperature phosphorescence, steric hindrance, the polymerase chain reaction, charge transfer absorption of donor–acceptor complexes and lectin–glycocluster interactions. Furthermore, the concept of photo-uncaging enables rational ways of concatenating logic gates. Computational concepts are also applied to potential cancer theranostics and to the selective monitoring of neurotransmitters in situ. Higher numbers of inputs are also accommodated with the concept of functional integration of gates, where complex input–output patterns are sought out and analysed. Molecular emulation of computational components such as demultiplexers and parity generators/checkers are achieved in related ways. Complexity of another order is tackled with molecular edge detection routines.
Resumo:
Elementary computing operations can be arranged within molecules so that problems in chemical, biochemical, and biological situations can be addressed. Problems that are found in small and/or living spaces, where the corresponding semiconductor logic devices cannot operate conveniently, are particularly amenable to this approach. The visualization and monitoring of intracellular species is one such category. Problems in medical diagnostics and therapy form additional categories. Chemists and biologists employ chemical synthesis and molecular biology techniques to build molecular logic devices. The photochemical approach to molecular logic devices is particularly prevalent. The fluorescent photoinduced electron transfer (PET) switching principle is particularly useful for designing logic functions into small molecules.
Resumo:
As data analytics are growing in importance they are also quickly becoming one of the dominant application domains that require parallel processing. This paper investigates the applicability of OpenMP, the dominant shared-memory parallel programming model in high-performance computing, to the domain of data analytics. We contrast the performance and programmability of key data analytics benchmarks against Phoenix++, a state-of-the-art shared memory map/reduce programming system. Our study shows that OpenMP outperforms the Phoenix++ system by a large margin for several benchmarks. In other cases, however, the programming model is lacking support for this application domain.
Resumo:
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are formalized using propositional formulas. Compared to normal form games, a well-studied and related game framework, Boolean games allow for an intuitive and more compact representation of the agents’ goals. So far, Boolean games have been mainly studied in the literature from the Knowledge Representation perspective, and less attention has been paid on the algorithmic issues underlying the computation of solution concepts. Although some suggestions for solving specific classes of Boolean games have been made in the literature, there is currently no work available on the practical performance. In this paper, we propose the first technique to solve general Boolean games that does not require an exponential translation to normal-form games. Our method is based on disjunctive answer set programming and computes solutions (equilibria) of arbitrary Boolean games. It can be applied to a wide variety of solution concepts, and can naturally deal with extensions of Boolean games such as constraints and costs. We present detailed experimental results in which we compare the proposed method against a number of existing methods for solving specific classes of Boolean games, as well as adaptations of methods that were initially designed for normal-form games. We found that the heuristic methods that do not require all payoff matrix entries performed well for smaller Boolean games, while our ASP based technique is faster when the problem instances have a higher number of agents or action variables.
Resumo:
Boolean games are a framework for reasoning about the rational behaviour of agents, whose goals are formalized using propositional formulas. They offer an attractive alternative to normal-form games, because they allow for a more intuitive and more compact encoding. Unfortunately, however, there is currently no general, tailor-made method available to compute the equilibria of Boolean games. In this paper, we introduce a method for finding the pure Nash equilibria based on disjunctive answer set programming. Our method is furthermore capable of finding the core elements and the Pareto optimal equilibria, and can easily be modified to support other forms of optimality, thanks to the declarative nature of disjunctive answer set programming. Experimental results clearly demonstrate the effectiveness of the proposed method.
Resumo:
In Boolean games, agents try to reach a goal formulated as a Boolean formula. These games are attractive because of their compact representations. However, few methods are available to compute the solutions and they are either limited or do not take privacy or communication concerns into account. In this paper we propose the use of an algorithm related to reinforcement learning to address this problem. Our method is decentralized in the sense that agents try to achieve their goals without knowledge of the other agents’ goals. We prove that this is a sound method to compute a Pareto optimal pure Nash equilibrium for an interesting class of Boolean games. Experimental results are used to investigate the performance of the algorithm.
Resumo:
Approximate execution is a viable technique for environments with energy constraints, provided that applications are given the mechanisms to produce outputs of the highest possible quality within the available energy budget. This paper introduces a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows developers to structure the computation in different tasks, and to express the relative importance of these tasks for the quality of the end result. For non-significant tasks, the developer can also supply less costly, approximate versions. The target energy consumption for a given execution is specified when the application is launched. A significance-aware runtime system employs an application-specific analytical energy model to decide how many cores to use for the execution, the operating frequency for these cores, as well as the degree of task approximation, so as to maximize the quality of the output while meeting the user-specified energy constraints. Evaluation on a dual-socket 16-core Intel platform using 9 benchmark kernels shows that the proposed framework picks the optimal configuration with high accuracy. Also, a comparison with loop perforation (a well-known compile-time approximation technique), shows that the proposed framework results in significantly higher quality for the same energy budget.
Resumo:
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0–3, 3–6 and 6–18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year.
Resumo:
In this paper we study the modifications that occurred in some forest soil properties after a prescribed fire. The research focused on the alterations of soil pH, soil moisture and soil organic matter content during a two-year span, from 2008 to 2009. The study site is located in Anjos, Vieira do Minho municipality, a forest site that has suffered from recurrent wildfires for several decades. Furze (Ulex, sp.), broom (Cytisus, sp.), gorse (Chamaespartum tridentatum) and a very few disperse adult pine (Pinus sylvestris) are the predominant vegetation type in the study area. The average height of this shrub vegetation is around 1.5 m. The prescribed fire was conducted by the National Forestry Authority (AFN) in November 2008. Fuzzy Boolean Nets (FBN) were used to evaluate the alteration in soil parameters when compared with adjacent spots where: i) no fire occurrence was registered since 1998; ii) fire occurrence was registered in 2008; and iii) vegetation pruning by mechanical cut was done in Spring six months prior to the prescribed fire event. Results suggest that in the particular case of the studied site, Anjos, the observed soil properties alterations cannot be related with the prescribed fire.
Resumo:
Portuguese northern forests are often and severely affected by wildfires during the summer season. Some preventive actions, such as prescribed (or controlled) burnings and clear-cut logging, are often used as a measure to reduce the occurrences of wildfires. In the particular case of Serra da Cabreira forest, due to extremely difficulties in operational field work, the prescribed (or controlled) burning technique is the the most common preventive action used to reduce the existing fuel load amount. This paper focuses on a Fuzzy Boolean Nets analysis of the changes in some forest soil properties, namely pH, moisture and organic matter content, after a controlled fire, and on the difficulties found during the sampling process and how they were overcome. The monitoring process was conducted during a three-month period in Anjos, Vieira do Minho, Portugal, an area located in a contact zone between a two-mica coarse-grained porphyritic granite and a biotite with plagioclase granite. The sampling sites were located in a spot dominated by quartzphyllite with quartz veins whose bedrock is partially altered and covered by slightly thick humus, which maintains low undergrowth vegetation.