969 resultados para Bone regeneration, Bone defect, Platelet-rich plasma, Collagen, Animal model, Sheep


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In horses less than one year of age fractures of the third metacarpal bone (McIII) or metatarsal bone III (MtIII) are mainly attributed to trauma. Open reduction and internal fixation are the most common treatment method. A Quarter Horse filly with three months of age, which weighed 150kg presented a diaphyseal multifragmentar wedge fracture of right MtIII which was treated with transcortical pins and cast, associated with intralesional application of platelet rich plasma (PRP). After two years of surgery, the animal initiated a training program for racing, and six months later, the patient ran its first official match. The choice of therapeutic methods for treating fractures in horses should be one that provides an earlier repair and minor possibility of complications. Thus, the therapy association which was adopted was considered favorable, since allowed full reestablishment of locomotion of the patient and made possible its return to race.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://www.woodheadpublishing.com/en/book.aspx?bookID=1598

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare four different implantation modalities for the repair of superficial osteochondral defects in a caprine model using autologous, scaffold-free, engineered cartilage constructs, and to describe the short-term outcome of successfully implanted constructs. METHODS: Scaffold-free, autologous cartilage constructs were implanted within superficial osteochondral defects created in the stifle joints of nine adult goats. The implants were distributed between four 6-mm-diameter superficial osteochondral defects created in the trochlea femoris and secured in the defect using a covering periosteal flap (PF) alone or in combination with adhesives (platelet-rich plasma (PRP) or fibrin), or using PRP alone. Eight weeks after implantation surgery, the animals were killed. The defect sites were excised and subjected to macroscopic and histopathologic analyses. RESULTS: At 8 weeks, implants that had been held in place exclusively with a PF were well integrated both laterally and basally. The repair tissue manifested an architecture similar to that of hyaline articular cartilage. However, most of the implants that had been glued in place in the absence of a PF were lost during the initial 4-week phase of restricted joint movement. The use of human fibrin glue (FG) led to massive cell infiltration of the subchondral bone. CONCLUSIONS: The implantation of autologous, scaffold-free, engineered cartilage constructs might best be performed beneath a PF without the use of tissue adhesives. Successfully implanted constructs showed hyaline-like characteristics in adult goats within 2 months. Long-term animal studies and pilot clinical trials are now needed to evaluate the efficacy of this treatment strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This clinical study prospectively evaluated the healing outcome 1 year after apical surgery in relation to bony crypt dimensions measured intraoperatively. The study cohort included 183 teeth in an equal number of patients. For statistical analysis, results were dichotomized (healed versus non-healed cases). The overall success rate was 83% (healed cases). Healing outcome was not significantly related to the level and height of the facial bone plate. In contrast, a significant difference was found for the mean size of the bony crypt when healed cases (395 mm(3)) were compared with non-healed cases (554 mm(3)). In addition, healed cases had a significantly shorter mean distance (4.30 mm) from the facial bone surface to the root canal (horizontal access) compared with non-healed cases (5.13 mm). With logistic regression, however, the only parameter found to be significantly related to healing outcome was the length of the access window to the bony crypt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HYPOTHESIS We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. METHODS Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. RESULTS There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. DISCUSSION/CONCLUSIONS Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose The discovery that flavonoids are capable of inhibiting platelet function has led to their investigation as potential antithrombotic agents. However, despite the range of studies on the antiplatelet properties of flavonoids, little is known about the mechanisms by which flavonoids inhibit platelet function. In this study, we aimed to explore the pharmacological effects of a polymethoxy flavonoid, nobiletin in the modulation of platelet function. Experimental Approach The ability of nobiletin to modulate platelet function was explored by using a range of in vitro and in vivo experimental approaches. Aggregation, dense granule secretion and spreading assays were performed using washed platelets. The fibrinogen binding, α-granule secretion and calcium mobilisation assays were performed using platelet-rich plasma and whole blood was used in impedance aggregometry and thrombus formation experiments. The effect of nobiletin in vivo was assessed by measuring tail bleeding time using C57BL/6 mice. Key Results Nobiletin was shown to supress a range of well-established activatory mechanisms, including platelet aggregation, granule secretion, integrin modulation, calcium mobilisation and thrombus formation. Nobiletin was shown to extend bleeding time in mice and reduce the phosphorylation of Akt and PLCγ2 within the collagen receptor (GPVI) - stimulated pathway, in addition to increasing the levels of cGMP and phosphorylation of VASP, a protein whose activity is associated with inhibitory cyclic nucleotide signalling. Conclusions and Implications This study provides insight into the underlying molecular mechanisms through which nobiletin modulates haemostasis and thrombus formation. Therefore nobiletin may represent a potential antithrombotic agent of dietary origins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the histological changes that occur in rat soft and hard tissues after Er,Cr:YSGG laser surgery. Each of 20 rats was submitted to four procedures which were randomly distributed to the right and left sides of the animal: procedure 1 dorsal incision with a scalpel; procedure 2 dorsal incision with a 2.0-W Er,Cr:YSGG laser; procedure 3 skull defect created with a diamond bur; procedure 4 skull defect created with a 3.0-W Er,Cr:YSGG laser. The animals were killed 3, 7, 15 and 30 days after surgery, and histological examinations were performed. The histometric analysis of the bone defects was evaluated using an unpaired t-test. Initially, the dorsum showed more histological signs of repair following procedure 1, although similar healing responses following procedures 1 and 2 were seen on day 30 after surgery. By day 30 the bone formation observed following procedure 4 was much more evident than following procedure 3. The unpaired t-test identified significant differences in bone formation on day 30 (p = 0.01), whereas a greater bone percentage was seen following procedure 4 than following procedure 3 (79.96 +/- 10.30% and 58.23 +/- 9.99%, respectively). Thus, histological repair of the Er,Cr:YSGG laser wounds was similar to that of the scalpel wounds. However, skull defects created with the Er,Cr:YSGG laser showed greater bone formation than defects created with the bur. Within the limitations of this study, we can conclude that the Er,Cr:YSGG laser is a promising surgical instrument in vivo, particularly for bone surgery.