996 resultados para Bone defect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traumatic injuries treatment of the fronto-naso-orbito-ethmoidal region has been one of the most challenging treatments within maxillofacial surgery, particularly of extensive orbital defects, very common in this type of pathologic condition. A 48-year-old man involved in a car collision presented an extensive bilateral fracture of the orbit medial wall, nasal bones, the nasal septum, and the frontal anterior table. The clinical and tomographic findings concluded the diagnosis of a maxilla and fronto-naso-orbito-ethmoidal fracture. Among the variety of biomaterials, the titanium mesh was elected because of the extension and magnitude of the bone defect, obtaining this way esthetic and functional results with better prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biocerâmicas porosas tem aplicações biomédicas importantes como preenchimento de defeitos ósseos e scaffolds na engenharia de tecidos. A hidroxiapatita (HA, Ca10(PO4)6(OH)2) que apresenta semelhança química e estrutural com a fase mineral dos ossos e dos dentes, é biocompatível e osteocondutiva, e tem excelente afinidade química e biológica com os tecidos ósseos. Este trabalho teve como objetivo desenvolver biocerâmicas porosas HA para utilização como scaffold para regeneração óssea empregando-se a técnica de réplica da esponja polimérica. A pasta biocerâmica de HA foi obtida por via úmida utilizando hidróxido de cálcio [Ca(OH)2] e ácido fosfórico (H3PO4) e impregnada em esponjas de poliuretano com diferentes densidades. Tratamento térmico a 600°C por 1h foi realizado para eliminação da esponja seguido da sinterização a 1100°C por 2 horas. Os scaffolds apresentaram a HA como fase majoritária, elevada porosidade (> 70%) e poros com tamanhos variando na ordem de macro (>100μm) e microporosidade (1-20μm), sendo estes fatores adequados para a aplicação como scaffolds para regeneração óssea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this work was to evaluate the effectiveness of homogenous demineralized dentin matrix (HDDM) slices in surgical bone defects created in the mandibles of rabbits and occluded with a polytetrafluoroethylene (PTFE) membrane in the promotion of bone growth. Materials and Methods: Surgical bone defects were created in 36 adult rabbits and divided into 4 groups: bone defect (control), bone defect with PTFE membrane, bone defect with HDDM, and bone defect with both HDDM and a PTFE membrane (HDDM + PTFE). The rabbits were sacrificed after 30, 60, and 90 days, and the bone defects were examined histologically and by histomorphometric analysis (analysis of variance and the Tukey test). Results: The volume of newly formed bone matrix was significantly greater in the HDDM and HDDM + PTFE groups than in the control and PTFE groups. The discrete inflammatory reaction found in the HDDM and HDDM + PTFE groups did not prevent the osteopromotive activity of the dentin matrix. Discussion: HDDM slices were biocompatible and were resorbed during the bone remodeling process. They stimulated the newly formed bone until 30 days after implantation. Conclusion: Bone repair was accelerated in the bone defects treated with HDDM in comparison to the control group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomaterials such as membrane barriers and/or bone grafts are often used to enhance periapical new bone formation. A combination of apical surgery and these biomaterials is one of the latest treatment options for avoiding tooth extraction. In case of periapical lesions, guided tissue regeneration (GTR) is attempted to improve the self-regenerative healing process by excluding undesired proliferation of the gingival connective tissue or migration of the oral epithelial cells into osseous defects. In many cases, GTR is necessary for achieving periodontal tissue healing. This report describes the healing process after surgery in a challenging case with a long-term followup. In this case report, endodontic surgery was followed by retrograde sealing with mineral trioxide aggregate (MTA) in the maxillary right central incisor and left lateral incisor. Apicectomy was performed in the maxillary left central incisor and a 1-mm filling was removed. The bone defect was filled with an anorganic bone graft and covered with a decalcified cortical osseous membrane. No intraoperative or postoperative complications were observed. After 13 years of follow-up, the patient showed no clinical signs or symptoms associated with the lesion and radiographic examination showed progressive resolution of radiolucency. In conclusion, the combination of apical surgery and regenerative techniques can successfully help the treatment of periapical lesions of endodontic origin and is suitable for the management of challenging cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to evaluate the osteointegration and genotoxic potential of a bioactive scaffold, composed of alumina and coated with hydroxyapatite and bioglass, after their implantation in tibias of rats. For this purpose, Wistar rats underwent surgery to induce a tibial bone defect, which was filled with the bioactive scaffolds. Histology analysis (descriptive and morphometry) of the bone tissue and the single-cell gel assay (comet) in multiple organs (blood, liver, and kidney) were used to reach this aim after a period of 30, 60, 90, and 180 days of material implantation. The main findings showed that the incorporation of hydroxyapatite and bioglass in the alumina scaffolds produced a suitable environment for bone ingrowth in the tibial defects and did not demonstrate any genotoxicity in the organs evaluated in all experimental periods. These results clearly indicate that the bioactive scaffolds used in this study present osteogenic potential and still exhibit local and systemic biocompatibility. These findings are promising once they convey important information about the behavior of this novel biomaterial in biological system and highlight its possible clinical application. © 2013 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Sinking skin flap syndrome or syndrome of the trephined is a rare complication after a large craniectomy, with a sunken skin above the bone defect with neurological symptoms such as severe headache, mental changes, focal deficits, or seizures. PRESENTATION OF CASE We report a case of 21 years old man with trefinated syndrome showing delayed dysautonomic changes. DISCUSSION Our patient had a large bone flap defect and a VP shunt that constitute risk factors to develop this syndrome. Also, there is reabsorption of bone tissue while it is placed in subcutaneous tissue. The principal symptoms of sinking skin flap syndrome are severe headache, mental changes, focal deficits, or seizures. Our patient presented with a delayed dysautonomic syndrome, with signs and symptoms very characteristics. Only few cases of this syndrome were related in literature and none were presented with dysautonomic syndrome. CONCLUSION We reported here a very uncommon case of sinking skill flap syndrome that causes a severe dysautonomic syndrome and worsening the patient condition. © 2013 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)