922 resultados para Bone Strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Background: Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease leading to sensory and motor polyneuropathies, and functional limitations. Liver transplantation is the only treatment for FAP, requiring medication that negatively affects bone and muscle metabolism. The aim of this study was to compare body composition, levels of specific strength, level of physical disability risk, and functional capacity of transplanted FAP patients (FAPTx) with a group of healthy individuals (CON). Methods: A group of patients with 48 FAPTx (28 men, 20 women) was compared with 24 CON individuals (14 men, 10 women). Body composition was assessed by dual-energy X-ray absorptiometry, and total skeletal muscle mass (TBSMM) and skeletal muscle index (SMI) were calculated. Handgrip strength was measured for both hands as was isometric strength of quadriceps. Muscle quality (MQ) was ascertained by the ratio of strength to muscle mass. Functional capacity was assessed by the six-minute walk test. Results: Patients with FAPTx had significantly lower functional capacity, weight, body mass index, total fat mass, TBSMM, SMI, lean mass, muscle strength, MQ, and bone mineral density. Conclusion: Patients with FAPTx appear to be at particularly high risk of functional disability, suggesting an important role for an early and appropriately designed rehabilitation program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malnutrition, a risk factor for osteoporotic fractures, is frequent in elderly people and, is underdiagnosed and undertreated. There are only few studies on the nutritional status of elderly people in Europe. The Mini Nutritional Assessment (MNA) is a non invasive and validated questionnaire to evaluate nutritional status in elderly people, classified in three groups: 1 degree score < 17: malnourished, 2 degrees score >17 and < 24: at risk of malnutrition, 3 degrees score >24: well-nourished, with a maximum of 30 points. Quantitative ultrasound of bone (QUS) is a method for assessing quality of bone which can be easily performed in nursing homes. Therefore, these two tests allowed to study the relationships between nutritional status and ultrasonic parameters of bone in 78 institutionalized women aged 86 +/- 6 years, living in 11 nursing homes around Lausanne (Switzerland). All were assessed by the MNA, had a measurement of the tricipital skin fold and of the grip strength. Functional status was evaluated by the scale "Activity of Daily Living" (ADL), and serum albumin level was measured when permitted. All had QUS of the calcaneus (with an Achilles, GE Lunar). The measured parameters are the Broadband Ultrasound Attenuation (BUA), attenuation of a band of ultrasonic frequencies through the medium, expressed in dB/MHz, and the Speed of Sound (SOS), speed of the ultrasounds through the medium, expressed in m/s. A third parameter, the stiffness index (SI), expressed as a percentage of the values obtained by the manufacturer in a young population and derived from BUA and SOS, was calculated automatically : SI = (0.67xBUA) + (0.28xSOS) - 420, expressed in percent compared to a young adult population (%YA). Fifteen percent of the women were undernourished and 58% were at risk of malnutrition. As expected, compared with the well-nourished minority, undernourished subjects had significant lower body mass index (BMI), tricipital skin fold (TSF), ADL score and albumin level (p < 0,01). The subjects "at risk of malnutrition" had significant lower BMI, ADL score (p < 0.01), tricipital skin fold and serum albumin (p < 0.05). Ultrasound parameters were low independently of the nutritional status. MNA score correlated significantly with tricipital skin fold (r = 0.508, p < 0.01), ADL (r = 0.538, p < 0.01) and albumin serum level (r = 0.409, p = 0.01). There was a trend for a correlation between the MNA and the ultrasound parameter BUA (r = 0.207, p = 0.07), whereas no correlation was found with SOS and SI. A multivariate analysis showed that tricipital skin fold and ADL explained 61% of the variance of the MNA. In conclusion, using simple and non invasive methods, this study showed that malnutrition and osteoporosis are frequent in institutionalized elderly persons in our country, and the ultrasound parameters are influenced by many others factors in addition to nutrition, especially at this age and in elderly residents of nursing homes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of the study was to investigate the influence of dietary intake of commercial hydrolyzed collagen (Gelatine Royal ®) on bone remodeling in pre-pubertal children. Methods: A randomized double-blind study was carried out in 60 children (9.42 ± 1.31 years) divided into three groups according to the amount of partially hydrolyzed collagen taken daily for 4 months: placebo (G-I, n = 18), collagen (G-II, n = 20) and collagen + calcium (G-III, n = 22) groups. Analyses of the following biochemical markers were carried out: total and bone alkaline phosphatase (tALP and bALP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), type I collagen carboxy terminal telopeptide, lipids, calcium, 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), thyroid-stimulating hormone, free thyroxin and intact parathormone. Results: There was a significantly greater increase in serum IGF-1 in G-III than in G II (p < 0.01) or G-I (p < 0.05) during the study period, and a significantly greater increase in plasma tALP in G-III than in G-I (p < 0.05). Serum bALP behavior significantly (p < 0.05) differed between G-II (increase) and G-I (decrease). Plasma TRAP behavior significantly differed between G-II and G-I (p < 0.01) and between G-III and G-II (p < 0.05). Conclusion: Daily dietary intake of hydrolyzed collagen seems to have a potential role in enhancing bone remodeling at key stages of growth and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Specific physical loading leads to enhanced bone development during childhood. A general physical activity program mimicking a real-life situation was successful at increasing general physical health in children. Yet, it is not clear whether it can equally increase bone mineral mass. We performed a cluster-randomized controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during one school-year influences bone mineral content (BMC) and density (BMD), irrespective of gender.Methods: Twenty-eight 1st and 5th grade (6-7 and 11-12 year-old) classes were cluster randomized to an intervention (INT, 16 classes, n = 297) and control (CON; 12 classes, n = 205) group. The intervention consisted of a multi-component PA intervention including daily physical education with at least 10 min of jumping or strength training exercises of various intensities. Measurements included anthropometry, and BMC and BMD of total body, femoral neck, total hip and lumbar spine using dual-energy X-ray absorptiometry (DXA). PA was assessed by accelerometers and Tanner stages by questionnaires. Analyses were performed by a regression model adjusted for gender, baseline height and weight, baseline PA, post-intervention pubertal stage, baseline BMC, and cluster.Results: 275 (72%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 8.7 +/- 2.1 and 11.1 +/- 0.6 years, respectively. Compared to CON, children in INT showed statistically significant increases in BMC of total body, femoral neck, and lumbar spine by 5.5%, 5.4% and 4.7% (all p < 0.05), respectively, and BMD of total body and lumbar spine by 8.4% and 7.3% (both p < 0.01), respectively. There was no gender*group, but a pubertal stage*group interaction consistently favoring prepubertal children.Conclusion: A general school-based PA intervention can increase bone health in elementary school children of both genders, particularly before puberty. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural basis of the antifracture efficacy of strontium ranelate and alendronate is incompletely understood. We compared the effects of strontium ranelate and alendronate on distal tibia microstructure over 2 years using HR-pQCT. In this pre-planned, interim, intention-to-treat analysis at 12 months, 88 osteoporotic postmenopausal women (mean age 63.7 +/- 7.4) were randomized to strontium ranelate 2 g/day or alendronate 70 mg/week in a double-placebo design. Primary endpoints were changes in microstructure. Secondary endpoints included lumbar and hip areal bone mineral density (aBMD), and bone turnover markers. This trial is registered with http://www.controlled-trials.com, number ISRCTN82719233. Baseline characteristics of the two groups were similar. Treatment with strontium ranelate was associated with increases in mean cortical thickness (CTh, 5.3%), cortical area (4.9%) and trabecular density (2.1%) (all P < 0.001, except cortical area P = 0.013). No significant changes were observed with alendronate. Between-group differences in favor of strontium ranelate were observed for CTh, cortical area, BV/TV and trabecular density (P = 0.045, 0.041, 0.048 and 0.035, respectively). aBMD increased to a similar extent with strontium ranelate and alendronate at the spine (5.7% versus 5.1%, respectively) and total hip (3.3% versus 2.2%, respectively). No significant changes were observed in remodeling markers with strontium ranelate, while suppression was observed with alendronate. Within the methodological constraints of HR-pQCT through its possible sensitivity to X-ray attenuation of different minerals, strontium ranelate had greater effects than alendronate on distal tibia cortical thickness and trabecular volumetric density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79 % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: We performed a randomised controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during a full schoolyear influences bone mineral content (BMC) and whether there are differences in response for boys and girls before and during puberty. Methods: Twenty-eight 1st and 5th grade classes were cluster randomised to an intervention (INT, 16 classes, n=297) and control (CON; 12 classes, n=205) group. The intervention consisted of a multi-component PA intervention including daily physical education during a full school year. Each lesson was predetermined, included about ten minutes of jumping or strength training exercises of various intensity and was the same for all children. Measurements included anthropometry (height and weight), tanner stages (by self-assessment), PA (by accelerometry) and BMC for total body, femoral neck, total hip and lumbar spine using dualenergy X-ray absorptiometry (DXA). Bone parameters were normalized for gender and tanner stage (pre- vs. puberty). Analyses were performed by a regression model adjusted for gender, baseline height, baseline weight, baseline PA, post-intervention tanner stage, baseline BMC, and cluster. Researchers were blinded to group allocation. Children in the control group did not know about the intervention arm. Results: 217 (57%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 9.0±2.1 and 11.2±0.6 years, respectively. 47/114 girls and 68/103 boys were prepubertal at the end of the intervention. Compared to CON, children in INT showed statistically significant increases in BMC of total body (adjusted z-score differences: 0.123; 95%>CI 0.035 to 0.212), femoral neck (0.155; 95%>CI 0.007 to 0.302), and lumbar spine (0.127; 95%>CI 0.026 to 0.228). Importantly, there was no gender*group, but a tanner*group interaction consistently favoring prepubertal children. Conclusions: Our findings show that a general, but stringent school-based PA intervention can improve BMC in elementary school children. Pubertal stage, but not gender seems to determine bone sensitivity to physical activity loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controversy exists about the best method to achieve bone fusion in four-corner arthrodesis. Thirty-five patients who underwent this procedure by our technique were included in the study. Surgical indications were stage II-III SLAC wrist, stage II SNAC wrist and severe traumatic midcarpal joint injury. Mean follow-up was 4.6 years. Mean active flexion and extension were 34 degrees and 30 degrees respectively; grip strength recovery was 79%. Radiological consolidation was achieved in all cases. The mean DASH score was 23 and the postoperative pain improvement by visual analogue scale was statistically significant. Return to work was possible at 4 months for the average patient. Complications were a capitate fracture in one patient and the need for hardware removal in four cases. Four-corner bone wrist arthrodesis by dorsal rectangular plating achieves an acceptable preservation of range of motion with good pain relief, an excellent consolidation rate and minimal complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract:The objective of this work was to evaluate the effect of limestone particle sizes in the diet and of lighting regimes on the egg and bone quality and on the performance of commercial laying hens. Three hundred Hissex White layers, at 18 weeks of age, were distributed in a completely randomized design, in a 5×2 factorial arrangement (coarse limestone in the diet at 0, 25, 50, 75, and 100%; with or without artificial light), with five replicates of six birds. No significant interaction was observed between particle sizes and lighting regime for the evaluated parameters. There was no significant effect of coarse limestone level in the diet on the performance and egg quality of hens; however, bone deformity (3.23 to 4.01 mm), strength (5.19 to 6.70 kgf cm-2), and mineral matter (51.09 to 59.61%) improved as the proportion of coarse limestone increased. For lighting regime, the treatment with artificial light yielded higher Haugh unit values (87.17 vs. 85.54) than that with natural light only. Greater limestone particles improve bone quality of laying hens, and the use of artificial light can benefit the albumen quality of the eggs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin D is the main hormone of bone metabolism. However, the ubiquitary nature of vitamin D receptor (VDR) suggests potential for widespread effects, which has led to new research exploring the effects of vitamin D on a variety of tissues, especially in the skeletal muscle. In vitro studies have shown that the active form of vitamin D, calcitriol, acts in myocytes through genomic effects involving VDR activation in the cell nucleus to drive cellular differentiation and proliferation. A putative transmembrane receptor may be responsible for nongenomic effects leading to rapid influx of calcium within muscle cells. Hypovitaminosis D is consistently associated with decrease in muscle function and performance and increase in disability. On the contrary, vitamin D supplementation has been shown to improve muscle strength and gait in different settings, especially in elderly patients. Despite some controversies in the interpretation of meta-analysis, a reduced risk of falls has been attributed to vitamin D supplementation due to direct effects on muscle cells. Finally, a low vitamin D status is consistently associated with the frail phenotype. This is why many authorities recommend vitamin D supplementation in the frail patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.