987 resultados para Blood Gases
Resumo:
The benefits of prone position ventilation are well demonstrated in the severe forms of acute respiratory distress syndrome, but not in the milder forms. We investigated the effects of prone position on arterial blood gases, lung inflammation, and histology in an experimental mild acute lung injury (ALI) model. ALI was induced in Wistar rats by intraperitoneal Escherichia coli lipopolysaccharide (LPS, 5 mg/kg). After 24 h, the animals with PaO2/FIO2 between 200 and 300 mmHg were randomized into 2 groups: prone position (n = 6) and supine position (n = 6). Both groups were compared with a control group (n = 5) that was ventilated in the supine position. All of the groups were ventilated for 1 h with volume-controlled ventilation mode (tidal volume = 6 ml/kg, respiratory rate = 80 breaths/min, positive end-expiratory pressure = 5 cmH2O, inspired oxygen fraction = 1). Significantly higher lung injury scores were observed in the LPS-supine group compared to the LPS-prone and control groups (0.32 ± 0.03; 0.17 ± 0.03 and 0.13 ± 0.04, respectively) (p < 0.001), mainly due to a higher neutrophil infiltration level in the interstitial space and more proteinaceous debris that filled the airspaces. Similar differences were observed when the gravity-dependent lung regions and non-dependent lung regions were analyzed separately (p < 0.05). The BAL neutrophil content was also higher in the LPS-supine group compared to the LPS-prone and control groups (p < 0.05). There were no significant differences in the wet/dry ratio and gas exchange levels. In this experimental extrapulmonary mild ALI model, prone position ventilation for 1 h, when compared with supine position ventilation, was associated with lower lung inflammation and injury.
Resumo:
Estudaram-se as alterações nos eletrólitos, nos gases sanguíneos, na osmolalidade, no hematócrito, na hemoglobina, nas bases tituláveis e no anion gap no sangue venoso de 11 equinos da raça Puro Sangue Árabe, destreinados, submetidos a exercício máximo e submáximo em esteira rolante. Esses animais passaram por período de três dias de adaptação à esteira rolante e posteriormente realizaram dois exercícios testes, um de curta e outro de longa duração. Foram coletadas amostras de sangue venoso antes, imediatamente após e 30 minutos após o término dos exercícios. Após a realização do exercício máximo, observou-se diminuição significativa no pHv, na PvCO2, no HCO3, na cBase além de elevação no AG. Detectou-se também aumento do K+, do Ht e da Hb. Ao final do exercício submáximo, constatou-se somente aumento significativo no pHv, na cBase, na SatvO2 e na PvO2. Conclui-se que os equinos submetidos a exercício máximo desenvolveram acidose metabólica e alcalose respiratória compensatória, hipercalemia e aumento nos valores de hematócrito e hemoglobina. No exercício submáximo, os animais apresentaram alcalose metabólica hipoclorêmica e não ocorreram alterações no equilíbrio hidroeletrolítico.
Resumo:
This study was aimed to verify if chicks from eggs injected with ascorbic acid and subjected to thermal stress would have higher immunity than chicks from incubation at thermoneutrality without injection of ascorbic acid. The parameters evaluated were temperature on oxygen saturation in hemoglobin, glucose, number of erythrocytes, hematocrit rate and number of hemoglobins of newly hatched male chicks, hatched from eggs injected with ascorbic acid (AA) and subjected to thermal stress during incubation. The experimental design was completely randomized in factorial scheme 5 (application levels of ascorbic acid) x 2 (incubation temperatures). The data were subjected to analysis of variance using the General Linear Model procedure (GLM) of SAS ®. For the parameters (number of erythrocytes, rate of hematrocit and values of hemoglobin), there was significant interaction (p <0.05) between treatments in egg and incubation temperatures. Analyzing the interactions for these parameters, it was observed that the application of 0% ascorbic acid in egg minimized the effect of heat stress when compared with treatment without injection. The application of ascorbic acid levels in eggs incubated under heat stress failed to maximize the immunity of newly hatched chicks. It is assumed that the increased liquid in the amniotic fluid, in those embryos injected with water, favored the lower heat conductance for these embryos, thus helping in their development in relation to immunity. Considering that hemoglobin is related to the transport of gases, these data suggest that increasing the concentration of AA solution inoculated may influence the respiratory rates of eggs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
PURPOSE:To investigate the effects of occupational exposure to waste anesthetic gases on genetic material and antioxidant status in professionals during their medical residency. METHODS:The study group consisted of 15 medical residents from Anesthesiology and Surgery areas, of both genders, mainly exposed to isoflurane and to a lesser degree to sevoflurane and nitrous oxide; the control group consisted of 15 young adults not exposed to anesthetics. Blood samples were drawn from professionals during medical residency (eight, 16 and 22 months of exposure to waste anesthetic gases). DNA damage was evaluated by comet assay, and antioxidant defense was assessed by total thiols and the enzymes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT). RESULTS:When comparing the two groups, DNA damage was significantly increased at all time points evaluated in the exposed group; plasma thiols increased at 22 months of exposure and GPX was higher at 16 and 22 months of exposure. CONCLUSION:Young professionals exposed to waste anesthetic gases in operating rooms without adequate scavenging system have increased DNA damage and changes in redox status during medical residency. There is a need to minimize exposure to inhalation anesthetics and to provide better work conditions.
Resumo:
[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.
Resumo:
It has long been assumed that the red cell membrane is highly permeable to gases because the molecules of gases are small, uncharged, and soluble in lipids, such as those of a bilayer. The disappearance of 12C18O16O from a red cell suspension as the 18O exchanges between labeled CO2 + HCO3− and unlabeled HOH provides a measure of the carbonic anhydrase (CA) activity (acceleration, or A) inside the cell and of the membrane self-exchange permeability to HCO3− (Pm,HCO−3). To test this technique, we added sufficient 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate (DIDS) to inhibit all the HCO3−/Cl− transport protein (Band III or capnophorin) in a red cell suspension. We found that DIDS reduced Pm,HCO−3 as expected, but also appeared to reduce intracellular A, although separate experiments showed it has no effect on CA activity in homogenous solution. A decrease in Pm,CO2 would explain this finding. With a more advanced computational model, which solves for CA activity and membrane permeabilities to both CO2 and HCO3−, we found that DIDS inhibited both Pm,HCO−3 and Pm,CO2, whereas intracellular CA activity remained unchanged. The mechanism by which DIDS reduces CO2 permeability may not be through an action on the lipid bilayer itself, but rather on a membrane transport protein, implying that this is a normal route for at least part of red cell CO2 exchange.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Signatures: A⁶ B-R⁸ S⁶
Resumo:
La ingesta de etanol se ha relacionado a consecuencias lamentables a nivel social, familiar y jurídico; siendo importante el desarrollo de métodos de detección de etanol en sangre, prueba más confiable a nivel cuantitativo. En el presente trabajo se realizó la primera fase de la optimización de un método para el análisis de alcoholemia por cromatografía de gases con inyección directa y detección de ionización de llama (GC-FID). Se realizó la optimización de algunos parámetros cualitativos y cuantitativos, incluyendo tiempos de retención estables, selectividad del método demostrado por la ausencia de sustancias interferentes en el análisis; linealidad a bajos niveles con un coeficiente de determinación de R2 = 0.996. La aplicabilidad del método en un pool de 33 muestras con distintas concentraciones de etanol tomadas cómo puntos de referencia de baja, media y alta concentración. La cuantificación se realizó por estandarización interna mediante el uso de un estándar interno (n-butanol) y la estandarización externa mediante la curva de calibración a 4 niveles.