116 resultados para Blasting.
Resumo:
This thesis presents the study carried out at an underground mine to understand the stress distribution in the paste fills and to calculate the stability of the paste walls in the primary and secondary stopes. The mine is operated using sublevel stopes and fan blasting. The primary and secondary stopes are 20m wide, 30m high and between 20 and 60m long. Three-dimensional numerical models designed with the FLAC 3D software programme are used to study the distribution of the vertical stresses in the paste walls exposed in the primary and secondary stopes, and their evolution as the mining advance increases. The numerical models have demonstrated that an arc-like effect is produced in the paste fills of the primary stopes, that is, those which have either lateral walls in mineral or rock. This effect relieves the vertical stresses and increases the stability of the exposed paste wall fill. From the study, it is deduced that in this type of stope, the fill stability can be calculated using the formula established by Mitchell, (Mitchell, Olsen, and Smith 1982, 14-28). Based on the results of the numerical models, in the 30m high secondary stopes, the arc effect starts to be evident only in paste walls with a width/height ratio lower than 0.7. 3-D calculations show that the use of Mitchell formula may be risky when estimating the fill stability in secondary stopes. Therefore, in these cases, the traditional two-dimensional method for calculating the stability of vertical slopes on cohesive saturated soils in the short term should be used. However this method may give conservative results for paste walls in secondary stopes with a width/height ratio below 0.5. RESUMEN Esta Tesis presenta el estudio realizado en la mina subterránea de Aguas Teñidas (Huelva, España) para comprender la distribución de tensiones en los rellenos de pasta y calcular la estabilidad de las paredes de pasta en las cámaras primarias y secundarias. El método de explotación utilizado en esta mina es el de cámaras con subniveles y voladura en abanico. Las cámaras primarias y secundarias tienen una anchura de 20 m, una altura de 30 m y una longitud variable entre 20 y 60 m. Mediante modelos numéricos tridimensionales realizados con el programa FLAC 3D se ha estudiado la distribución de las tensiones verticales en las paredes de pasta que quedan expuestas en las cámaras primarias y secundarias, y su evolución a medida que aumenta la superficie explotada. La modelización numérica ha puesto de manifiesto que se produce efecto arco en los rellenos de pasta de las cámaras primarias, o sea, aquellas que tienen ambos hastiales en mineral o en roca. Este efecto aligera las tensiones verticales y aumenta la estabilidad del relleno de la pared de pasta expuesta. De acuerdo con los resultados de los modelos numéricos, en las cámaras secundarias de 30 m de alto, el efecto arco empieza a manifestarse solamente en las paredes de pasta de relación anchura/altura menor de 0,7. Los cálculos realizados en tres dimensiones indican que la fórmula de Mitchell (Mitchell, Olsen, y Smith 1982, 14-28) puede resultar arriesgada para estimar la estabilidad del relleno en este tipo de cámaras. Por consiguiente, se recomienda utilizar en estos casos el método que tradicionalmente se ha empleado para calcular la estabilidad de taludes verticales en suelos cohesivos a corto plazo, en dos dimensiones. Aunque este método puede resultar conservador para paredes de pasta de cámaras secundarias con una relación anchura/altura inferior a 0,5. Para usar relleno de pasta para el sostenimiento en minería subterránea hay que tener en cuenta el cálculo de los parámetros de diseño, optimización de la mezcla, cualidades de bombeo y la operación de transporte al interior de la mina. Los gastos de ésta operación minera son importantes ya que pueden representar hasta de 20%.
Resumo:
Mode of access: Internet.
Resumo:
"A short bibliography of explosives literature for blasters": p. 185-187.
Resumo:
Includes bibliographical references (185-187)
Resumo:
Mode of access: Internet.
Resumo:
Commercial explosives behave non-ideally in rock blasting. A direct and convenient measure of non-ideality is the detonation velocity. In this study, an alternative model fitted to experimental unconfined detonation velocity data is proposed and the effect of confinement on the detonation velocity is modelled. Unconfined data of several explosives showing various levels of nonideality were successfully modelled. The effect of confinement on detonation velocity was modelled empirically based on field detonation velocity measurements. Confined detonation velocity is a function of the ideal detonation velocity, unconfined detonation velocity at a given blasthole diameter and rock stiffness. For a given explosive and charge diameter, as confinement increases detonation velocity increases. The confinement model is implemented in a simple engineering based non-ideal detonation model. A number of simulations are carried out and analysed to predict the explosive performance parameters for the adopted blasting conditions.
Resumo:
Extensive in-situ testings has shown that blast fragmentation influences the performance of downstream processes in a mine, and as a consequence, the profit of the whole operation can be greatly improved through optimised fragmentation. Other unit operations like excavation, crushing and grinding can all be assisted by altering the blast-induced fragmentation. Experimental studies have indicated that a change in blasting practice would not only influence fragmentation but fragment strength as well. The strength of the fragments produced in a blast is clearly important to the performance of the crushing and grinding circuit as it affects the energy required to break the feed to a target product size. In order to validate the effect of blasting on fragment strength several lumps of granite were blasted, under controlled conditions, using three very different explosive products. The resulting fragments were subjected to standard comminution ore characterisation tests. Obtained comminution parameters were then used to simulate the performance of a SAG mill. Modelling results indicate that changes in post blast residual rock fragment strength significantly influences the performance of the SAG mill, producing up to a 20% increase in throughput. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Water level and current measurements from two virtually enclosed South Pacific atolls, Manihiki and Rakahanga, support a new lagoon flushing mechanism which is driven by waves and modulated by the ocean tide for virtually enclosed atolls. This is evident because the lagoon water level remains above the ocean at all tidal phases (i.e., ruling out tidal flushing) and because the average lagoon water level rises significantly during periods with large waves. Hence, we develop a model by which the lagoons are flushed by waves pumping of ocean water into the lagoon and gravity draining water from the lagoon over the reef rim. That is, the waves on the exposed side push water into the lagoon during most of the tidal cycle while water leaves the lagoon on the protected side for most of the tidal cycle. This wave-driven through flow flushing is shown to be more efficient than alternating tidal flushing with respect to water renewal. Improved water quality should therefore be sought through enhancement of the natural wave pumping rather than by blasting deep channels which would change the system to an alternating tide-driven one.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
The main objective of blasting is to produce optimum fragmentation for downstream processing. Fragmentation is usually considered optimum when the average fragment size is minimum and the fragmentation distribution as uniform as possible. One of the parameters affecting blasting fragmentation is believed to be time delay between holes of the same row. Although one can find a significant number of studies in the literature, which examine the relationship between time delay and fragmentation, their results have been often controversial. The purpose of this work is to increase the level of understanding of how time delay between holes of the same row affects fragmentation. Two series of experiments were conducted for this purpose. The first series involved tests on small scale grout and granite blocks to determine the moment of burden detachment. The instrumentation used for these experiments consisted mainly of strain gauges and piezoelectric sensors. Some experiments were also recorded with a high speed camera. It was concluded that the time of detachment for this specific setup is between 300 and 600 μs. The second series of experiments involved blasting of a 2 meter high granite bench and its purpose was the determination of the hole-to-hole delay that provides optimum fragmentation. The fragmentation results were assessed with image analysis software. Moreover, vibration was measured close to the blast and the experiments were recorded with high speed cameras. The results suggest that fragmentation was optimum when delays between 4 and 6 ms were used for this specific setup. Also, it was found that the moment at which gases first appear to be venting from the face was consistently around 6 ms after detonation.