936 resultados para Biology, Bioinformatics|Computer Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometry (MS) became a standard tool for identifying metabolites in biological tissues, and metabolomics is slowly acknowledged as a legitimate research discipline for characterizing biological conditions. The computational analyses of metabolomics, however, lag behind compared with the rapid advances in analytical aspects for two reasons. First is the lack of standardized data repository for mass spectra: each research institution is flooded with gigabytes of mass-spectral data from its own analytical groups and cannot host a world-class repository for mass spectra. The second reason is the lack of informatics experts that are fully experienced with spectral analyses. The two barriers must be overcome to establish a publicly free data server for MS analysis in metabolomics as does GenBank in genomics and UniProt in proteomics. The workshop brought together bioinformaticians working on mass spectral analyses in Finland and Japan with the goal to establish a consortium to freely exchange and publicize mass spectra of metabolites measured on various platforms computational tools to analyze spectra spectral knowledge that are computationally predicted from standardized data. This book contains the abstracts of the presentations given in the workshop. The programme of the workshop consisted of oral presentations from Japan and Finland, invited lectures from Steffen Neumann (Leibniz Institute of Plant Biochemistry), Matej Oresic (VTT), Merja Penttila (VTT) and Nicola Zamboni (ETH Zurich) as well as free form discussion among the participants. The event was funded by Academy of Finland (grants 139203 and 118653), Japan Society for the Promotion of Science (JSPS Japan-Finland Bilateral Semi- nar Program 2010) and Department of Computer Science University of Helsinki. We would like to thank all the people contributing to the technical pro- gramme and the sponsors for making the workshop possible. Helsinki, October 2010 Masanori Arita, Markus Heinonen and Juho Rousu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Understanding channel structures that lead to active sites or traverse the molecule is important in the study of molecular functions such as ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analyzing protein channels are required to support such studies. Further, there is a need for an integrated framework that supports computation of the channels, interactive exploration of their structure, and detailed visual analysis of their properties. Results: We describe a method for molecular channel extraction based on the alpha complex representation. The method computes geometrically feasible channels, stores both the volume occupied by the channel and its centerline in a unified representation, and reports significant channels. The representation also supports efficient computation of channel profiles that help understand channel properties. We describe methods for effective visualization of the channels and their profiles. These methods and the visual analysis framework are implemented in a software tool, CHEXVIS. We apply the method on a number of known channel containing proteins to extract pore features. Results from these experiments on several proteins show that CHEXVIS performance is comparable to, and in some cases, better than existing channel extraction techniques. Using several case studies, we demonstrate how CHEXVIS can be used to study channels, extract their properties and gain insights into molecular function. Conclusion: CHEXVIS supports the visual exploration of multiple channels together with their geometric and physico-chemical properties thereby enabling the understanding of the basic biology of transport through protein channels. The CHEXVIS web-server is freely available at http://vgl.serc.iisc.ernet.in/chexvis/. The web-server is supported on all modern browsers with latest Java plug-in.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three cDNA sequences encoding four SNARE (N-ethylmaleimide-sensitive fusion protein attachment protein receptors) motifs were cloned from sea perch, and the deduced peptide sequences were analyzed for structural prediction by using 14 different web servers and softwares. The "ionic layer" structure, the three dimensional extension and conformational characters of the SNARE 7S core complex by using bioinformatics approaches were compared respectively with those from mammalian X-ray crystallographic investigations. The result suggested that the formation and stabilization of fish SNARE core complex might be driven by hydrophobic association, hydrogen bond among R group of core amino acids and electrostatic attraction at molecular level. This revealed that the SNARE proteins interaction of the fish may share the same molecular mechanism with that of mammal, indicating the universality and solidity of SNARE core complex theory. This work is also an attempt to get the protein 3D structural information which appears to be similar to that obtained through X-ray crystallography, only by using computerized approaches. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ellis, D.I., Broadhurst, D., Rowland, J.J. and Goodacre, R. (2005) Rapid detection method for microbial spoilage using FT-IR and machine learning. In: Rapid Methods for Food and Feed Quality Determination, (Eds) van Amerongen, A., Barug, D and Lauwaars, M., Wageningen Academic Publishers, Wageningen, Netherlands, in press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pritchard, L., Corne, D., Kell, D.B., Rowland, J. & Winson, M. (2005) A general model of error-prone PCR. Journal of Theoretical Biology 234, 497-509.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clare, A. (2005) Integration of genomic and phenotypic data. In Data Analysis and Visualization in Genomics and Proteomics, Eds. Francisco Azuaje and Joaquin Dopazo, Wiley, London. ISBN: 0-470-09439-7

Relevância:

100.00% 100.00%

Publicador:

Resumo:

King, R.D., Garrett, S.M., Coghill, G.M. (2005). On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21(9):2017-2026 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clare, A., Williams, H. E. and Lester, N. M. (2004) Scalable Multi-Relational Association Mining. In proceedings of the 4th International Conference on Data Mining ICDM '04.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

King, R. D. and Wise, P. H. and Clare, A. (2004) Confirmation of Data Mining Based Predictions of Protein Function. Bioinformatics 20(7), 1110-1118

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clare, A. and King R.D. (2003) Predicting gene function in Saccharomyces cerevisiae. 2nd European Conference on Computational Biology (ECCB '03). (published as a journal supplement in Bioinformatics 19: ii42-ii49)