998 resultados para Biology, Animal Physiology|Health Sciences, Pathology|Health Sciences, Immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xp95 is the Xenopus ortholog of a conserved family of scaffold proteins that have in common an N-terminal Bro1 domain and a C-terminal proline rich domain (PRD). The regulation of this protein family is poorly understood. We previously showed that Xp95 undergoes a phosphorylation-dependant gel mobility shift during meiotic maturation of Xenopus oocytes, the only natural biological system in which post-translational modifications of this family has been demonstrated. Here we characterized Xp95 phosphorylation via two approaches. First, we tested a series of Xp95 fragments for the ability to gel-shift during oocyte maturation, and found that a fragment containing amino acids 705-786 is sufficient to cause a gel-shift. This fragment is within the N-terminal region of Xp95's PRD (N-PRD). Second, we purified phosphorylated Xp95 and by mass spectrometry found that a 5080 Da peptide which maps to N-PRD (amino acids 706-756) contains two phosphorylation sites, one of which is T745, within the conserved CIN85 binding motif. By in vitro protein interaction assays, we that T745 is critical for CIN85/Xp95 interaction, and that Xp95 phosphorylation correlates with loss of binding to CIN85. We also show that an Alix fragment (amino acids 604-789) also undergoes a gel-shift during oocyte maturation and during colcemid-induced mitotic arrest of HeLa cells. These findings indicate that Xp95/Alix is phosphorylated on the PRD during M phase induction and that the PRD phosphorylation regulates partner protein interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 4Fs (CYP4F) are a subfamily of enzymes involved in arachidonic acid metabolism with highest catalytic activity towards leukotriene B 4 (LTB4), a potent chemoattractant involved in prompting inflammation. CYP4F-mediated metabolism of LTB4 leads to inactive ω-hydroxy products incapable of initiating chemotaxis and the inflammatory stimuli that result in the influx of inflammatory cells. Our hypothesis is based on the catalytic ability of CYP4Fs to inactivate pro-inflammatory LTB4 which assures these enzymes a pivotal role in the process of inflammation resolution. ^ To test this hypothesis and evaluate the changes in CYP4F expression under complex inflammatory conditions, we designed two mouse models, one challenged with lipopolysaccharide (LPS) as a sterile model of sepsis and the other challenged with a systemic live bacterial infection of Citrobacter rodentium, an equivalent of the human enterobacterium E. coli pathogen invasion. Based on the evidence that Peroxisome Proliferator Activated Receptors (PPARs) play an active role in inflammation regulation, we also examined PPARs as a regulation mechanism in CYP4F expression during inflammation using PPARα knockout mice under LPS challenge. Using the Citrobacter rodentium model of inflammation, we studied CYP4F levels to compare them to those in LPS challenged animals. LPS-triggered inflammation signal is mediated by Toll-like 4 (TLR4) receptors which specifically respond to LPS in association with several other proteins. Using TLR4 knockout mice challenged with Citrobacter rodentium we addressed possible mediation of CYP4F expression regulation via these receptors. ^ Our results show isoform- and tissue-specific CYP4F expression in all the tissues examined. The Citrobacter rodentium inflammation model revealed significant reduction in liver expression of CYP4F14 and CYP4F15 and an up-regulation of gene expression of CYP4F16 and CYP4F18. TLR4 knockout studies showed that the decrease in hepatic CYP4F15 expression is TLR4-dependent. CYP4F expression in kidney shows down-regulation of CYP4F14 and CYP4F15 and up-regulation of CYP4F18 expression. In the LPS inflammation model, we showed similar patterns of CYP4F changes as in Citrobacter rodentium -infected mice. The renal profile of CYP4Fs in PPARα knockout mice with LPS challenge showed CYP4F15 down-regulation to be PPARα dependent. Our study confirmed tissue- and isoform-specific regulation of CYP4F isoforms in the course of inflammation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation was designed as a hospital-based, historical cohort study. The objective of the study was to determine the association between premature rupture of the membranes (PROM) and its duration on neonatal sepsis, infection, and mortality. Neonates born alive with gestational ages between 25 and 35 weeks from singleton pregnancies complicated by PROM were selected. Each of the 507 neonates was matched on gestational age, gender, ethnicity, and month of birth with a neonate without the complication of PROM.^ Data were abstracted from deliveries between January 1979 and December 1985 describing the mother's demographics, labor and delivery treatments and complications, the neonate's demographics, infection status, and medical care. The matched pairs analysis reveals a significant increase in risk of neonatal sepsis (RR = 3.5) and neonatal infection (RR = 2.4) among preterm births complicated by PROM, with a PROM exposure contributing an excess 4 to 5 cases of sepsis per 100 infants (RD = 0.04 for infection and RD = 0.05 for sepsis). Generally PROM remains an important risk factor for sepsis and infection when controlling for various other characteristics, and the risk difference remains constant.^ PROM was not significantly associated with neonatal mortality (RR = 1.02). There is an increase in risk difference for mortality associated with PROM among septic and infected infants, but it is not significant.^ A clear increase in risk of sepsis and infection from PROM occurs when durations of PROM are long (more than 48 hours), e.g., for sepsis the RR is 2.42 for short durations and RR is 6.0 for long durations. No such risk with long duration appears for neonatal mortality.^ This study indicates the importance of close observation of neonates with PROM for sepsis and infection so treatment can be initiated early. However, prematurity is the major risk for sepsis and the practice of early delivery to avoid prolonged durations of PROM does not alter the magnitude of risk. The greatest protection against these infection complications was provided when the neonate weighed over 1500 grams or had more than 33 weeks gestation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E$\sb2$ to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabelled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One way developing embryos regulate the expression of their genes is by localizing mRNAs to specific subcellular regions. In the oocyte of the frog, Xenopus laevis, many RNAs are localized specifically to the animal or the vegetal halves of the oocyte. The localization of these RNAs contributes to the primary polarity of the oocyte, the asymmetry that is the basis for patterning and lineage specification in the embryo. I have screened a cDNA library for clones containing the Xlsirt repeat, an element known to target RNAs to the vegetal cortex of the oocyte. I have identified seventeen cDNA clones that contain this element. One of these cDNAs encodes the RNA binding protein Hermes. The Hermes mRNA is localized to the vegetal cortex of the oocyte. Additionally, Hermes protein is also vegetally localized in the oocyte and is found in subcellular structures known to contain localized mRNAs. This suggests that Hermes might interact with localized RNAs. While Hermes protein is present in oocytes, it disappears at germinal vesicle breakdown during maturation. We therefore believe that the time period during which Hermes functions is during oogenesis or maturation prior to the time of Hermes degradation. To determine Hermes function, an antisense depletion strategy was used that involved injecting morpholino oligos (HE-MO) into oocytes. Injection of these morpholinos causes the level of Hennes protein to drop prematurely during maturation. Embryos produced from these oocytes exhibit cleavage defects that are most prevalent in the vegetal blastomeres. The phenotype can be partially rescued by injection of a heterologous Hermes mRNA and is therefore specific to Hermes. The Hermes expression and depletion results are consistent with a model in which Hermes interacts with one or more vegetally localized mRNAs in the oocyte and during the early stages of maturation. The interaction is required for cleavage of the vegetal blastomeres. Therefore, it is likely that at least one mRNA that interacts with Hermes is a cell cycle regulator. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'athérosclérose est une maladie inflammatoire chronique caractérisée par l'accumulation de cholestérol dans la paroi artérielle et associée à une réponse immunitaire anormale dans laquelle les macrophages jouent un rôle important. Récemment, il a été démontré que les vaisseaux lymphatiques jouent un rôle primordial dans le transport inverse du cholestérol (Martel et al. JCI 2013). L’objectif global de mon stage de maîtrise a été de mieux caractériser la dysfonction lymphatique associée à l’athérosclérose, en étudiant de plus près l’origine physiologique et temporelle de ce mauvais fonctionnement. Notre approche a été d’étudier, depuis l’initiation de l’athérosclérose jusqu’à la progression d’une lésion athérosclérotique tardive, la physiologie des deux constituants principaux qui forment les vaisseaux lymphatiques : les capillaires et collecteurs lymphatiques. En utilisant comme modèle principal des souris Ldlr-/-; hApoB100+/+, nous avons pu démontrer que la dysfonction lymphatique est présente avant même l’apparition de l’athérosclérose, et que cette dysfonction est principalement associée avec un défaut au niveau des vaisseaux collecteurs, limitant ainsi le transport de la lymphe des tissus périphériques vers le sang. De plus, nous avons démontré pour la première fois l’expression du récepteur au LDL par les cellules endothéliales lymphatiques. Nos travaux subséquents démontrent que ce défaut de propulsion de la lymphe pourrait être attribuable à l’absence du récepteur au LDL, et que la dysfonction lymphatique observée précocement dans l’athérosclérose peut être limitée par des injections systémiques de VEGF (vascular endothelial growth factor) –C. Ces résultats suggèrent que la caractérisation fonctionnelle de la capacité de pompage des vaisseaux collecteurs serait une condition préalable à la compréhension de l'interaction entre la fonction du système lymphatique et la progression de l'athérosclérose. Ultimement, nos travaux nous ont amené à considérer de nouvelles cibles thérapeutiques potentielles dans la prévention et le traitement de l’athérosclérose.