974 resultados para Biology, Animal Physiology|Chemistry, Biochemistry
Resumo:
Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^
Resumo:
Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^
Resumo:
Xp95 is the Xenopus ortholog of a conserved family of scaffold proteins that have in common an N-terminal Bro1 domain and a C-terminal proline rich domain (PRD). The regulation of this protein family is poorly understood. We previously showed that Xp95 undergoes a phosphorylation-dependant gel mobility shift during meiotic maturation of Xenopus oocytes, the only natural biological system in which post-translational modifications of this family has been demonstrated. Here we characterized Xp95 phosphorylation via two approaches. First, we tested a series of Xp95 fragments for the ability to gel-shift during oocyte maturation, and found that a fragment containing amino acids 705-786 is sufficient to cause a gel-shift. This fragment is within the N-terminal region of Xp95's PRD (N-PRD). Second, we purified phosphorylated Xp95 and by mass spectrometry found that a 5080 Da peptide which maps to N-PRD (amino acids 706-756) contains two phosphorylation sites, one of which is T745, within the conserved CIN85 binding motif. By in vitro protein interaction assays, we that T745 is critical for CIN85/Xp95 interaction, and that Xp95 phosphorylation correlates with loss of binding to CIN85. We also show that an Alix fragment (amino acids 604-789) also undergoes a gel-shift during oocyte maturation and during colcemid-induced mitotic arrest of HeLa cells. These findings indicate that Xp95/Alix is phosphorylated on the PRD during M phase induction and that the PRD phosphorylation regulates partner protein interaction. ^
Resumo:
Cytochromes P450 4Fs (CYP4F) are a subfamily of enzymes involved in arachidonic acid metabolism with highest catalytic activity towards leukotriene B 4 (LTB4), a potent chemoattractant involved in prompting inflammation. CYP4F-mediated metabolism of LTB4 leads to inactive ω-hydroxy products incapable of initiating chemotaxis and the inflammatory stimuli that result in the influx of inflammatory cells. Our hypothesis is based on the catalytic ability of CYP4Fs to inactivate pro-inflammatory LTB4 which assures these enzymes a pivotal role in the process of inflammation resolution. ^ To test this hypothesis and evaluate the changes in CYP4F expression under complex inflammatory conditions, we designed two mouse models, one challenged with lipopolysaccharide (LPS) as a sterile model of sepsis and the other challenged with a systemic live bacterial infection of Citrobacter rodentium, an equivalent of the human enterobacterium E. coli pathogen invasion. Based on the evidence that Peroxisome Proliferator Activated Receptors (PPARs) play an active role in inflammation regulation, we also examined PPARs as a regulation mechanism in CYP4F expression during inflammation using PPARα knockout mice under LPS challenge. Using the Citrobacter rodentium model of inflammation, we studied CYP4F levels to compare them to those in LPS challenged animals. LPS-triggered inflammation signal is mediated by Toll-like 4 (TLR4) receptors which specifically respond to LPS in association with several other proteins. Using TLR4 knockout mice challenged with Citrobacter rodentium we addressed possible mediation of CYP4F expression regulation via these receptors. ^ Our results show isoform- and tissue-specific CYP4F expression in all the tissues examined. The Citrobacter rodentium inflammation model revealed significant reduction in liver expression of CYP4F14 and CYP4F15 and an up-regulation of gene expression of CYP4F16 and CYP4F18. TLR4 knockout studies showed that the decrease in hepatic CYP4F15 expression is TLR4-dependent. CYP4F expression in kidney shows down-regulation of CYP4F14 and CYP4F15 and up-regulation of CYP4F18 expression. In the LPS inflammation model, we showed similar patterns of CYP4F changes as in Citrobacter rodentium -infected mice. The renal profile of CYP4Fs in PPARα knockout mice with LPS challenge showed CYP4F15 down-regulation to be PPARα dependent. Our study confirmed tissue- and isoform-specific regulation of CYP4F isoforms in the course of inflammation. ^
Resumo:
The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^
Resumo:
Pulmonary fibrosis (PF) is the result of a variety of environmental and cancer treatment related insults and is characterized by excessive deposition of collagen. Gas exchange in the alveoli is impaired as the normal lung becomes dense and collapsed leading to a loss of lung volume. It is now accepted that lung injury and fibrosis are in part genetically regulated. ^ Bleomycin is a chemotherapeutic agent used for testicular cancer and lymphomas that induces significant pulmonary toxicity. We delivered bleomycin to mice subcutaneously via a miniosmotic pump in order to elicit lung injury (LI) and quantified the %LI morphometrically using video imaging software. We previously identified a quantitative trait loci, Blmpf-1(LOD=17.4), in the Major Histocompatibility Complex (MHC), but the exact genetic components involved have remained unknown. ^ In the current studies, Blmpf-1 was narrowed to an interval spanning 31.9-32.9Mb on Chromosome 17 using MHC Congenic mice. This region includes the MHC Class II and III genes, and is flanked by the TNF-alpha super locus and MHC Class I genes. Knockout mice of MHC Class I genes (B2mko), MHC Class II genes (Cl2ko), and TNF-alpha (TNF-/-) and its receptors (p55-/-, p75-/-, and p55/p75-/-) were treated with bleomycin in order to ascertain the role of these genes in the pathogenesis of lung injury. ^ Cl2ko mice had significantly better survival and %LI when compared to treated background BL/6 (B6, P<.05). In contrast, B2mko showed no differences in survival or %LI compared to B6. This suggests that the MHC Class II locus contains susceptibility genes for bleomycin-induced lung injury. ^ TNF-alpha, a Class III gene, was examined and it was found that TNF-/- and p55-/- mice had higher %LI and lower survival when compared to B6 (P<.05). In contrast, p75-/- mice had significantly reduced %LI when compared to TNF-/-, p55-/-, and B6 mice as well as higher survival (P<.01). These data contradict the current paradigm that TNF-alpha is a profibrotic mediator of lung injury and suggest a novel and distinct role for the p55 and p75 receptors in mediating lung injury. ^
Resumo:
The survival of Mycobacterium tuberculosis (MTB) in macrophages largely plays upon its ability to manipulate the host immune response to its benefit. Trehalose 6,6'-dimycolate (TDM) is a glycolipid found abundantly on the surface of MTB. Preliminary studies have shown that MTB lacking TDM have a lower survival rate compared to wild-type MTB in infection experiments, and that lysosomal colocalization with the phagosome occurs more readily in delipidated MTB infections. The purpose of this dissertation is to identify the possible mechanistic roles of TDM and its importance to the survival of MTB in macrophages. Our hypothesis is that TDM promotes the survival of MTB by targeting specific immune functions in host macrophages. Our first specific aim is to evaluate the effects of TDM on MTB in surface marker expression and antigen presentation in macrophages. We characterized the surface marker response in murine macrophages infected with either TDM-intact or TDM-removed MTB. We found that the presence of TDM on MTB inhibited the expression of surface markers which are important for antigen presentation and costimulation to T cells. Then we measured and compared the ability of macrophages infected by MTB with or without TDM to present Antigen 85B to hybridoma T cells. Macrophages infected with TDM-intact MTB were found to be less efficient at antigen presentation than TDM-removed MTB. Our second aim is to identify molecular mechanisms which may be targeted by TDM to promote MTB survival in macrophages. We measured macrophage responsiveness to IFN-γ before or after MTB infection and correlated SOCS production to the presence of TDM on MTB. Macrophages infected with TDM-intact MTB were found to be less responsive to IFN-γ. This may be attributed to the TDM-driven production of SOCS, which was found to affect phosphorylation of the JAK-STAT signaling pathway. We also identified the importance of TLR2 and TLR4 in the initiation of SOCS by TDM-intact MTB in host macrophages. In conclusion, our studies reveal new insights into how TDM regulates macrophages and their immune functions to aid in the survival of MTB.^
Resumo:
The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^
ASSESSMENT OF SKELETAL MUSCLE BLOOD FLOW AND GLUCOSE METABOLISM WITH POSITRON EMITTING RADIONUCLIDES
Resumo:
In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^
Resumo:
This investigation was designed as a hospital-based, historical cohort study. The objective of the study was to determine the association between premature rupture of the membranes (PROM) and its duration on neonatal sepsis, infection, and mortality. Neonates born alive with gestational ages between 25 and 35 weeks from singleton pregnancies complicated by PROM were selected. Each of the 507 neonates was matched on gestational age, gender, ethnicity, and month of birth with a neonate without the complication of PROM.^ Data were abstracted from deliveries between January 1979 and December 1985 describing the mother's demographics, labor and delivery treatments and complications, the neonate's demographics, infection status, and medical care. The matched pairs analysis reveals a significant increase in risk of neonatal sepsis (RR = 3.5) and neonatal infection (RR = 2.4) among preterm births complicated by PROM, with a PROM exposure contributing an excess 4 to 5 cases of sepsis per 100 infants (RD = 0.04 for infection and RD = 0.05 for sepsis). Generally PROM remains an important risk factor for sepsis and infection when controlling for various other characteristics, and the risk difference remains constant.^ PROM was not significantly associated with neonatal mortality (RR = 1.02). There is an increase in risk difference for mortality associated with PROM among septic and infected infants, but it is not significant.^ A clear increase in risk of sepsis and infection from PROM occurs when durations of PROM are long (more than 48 hours), e.g., for sepsis the RR is 2.42 for short durations and RR is 6.0 for long durations. No such risk with long duration appears for neonatal mortality.^ This study indicates the importance of close observation of neonates with PROM for sepsis and infection so treatment can be initiated early. However, prematurity is the major risk for sepsis and the practice of early delivery to avoid prolonged durations of PROM does not alter the magnitude of risk. The greatest protection against these infection complications was provided when the neonate weighed over 1500 grams or had more than 33 weeks gestation. ^
Resumo:
Seasonal variation in menarche, menstrual cycle length and menopause was investigated using Tremin Trust data. Too, self-reported hot flash data for women with natural and surgically-induced menopause were analyzed for rhythms.^ Menarche data from approximately 600 U.S. women born between 1940 and 1970 revealed a 6-month rhythm (first acrophase in January, double amplitude of 58%M). A notable shift from a December-January peak in menarche for those born in the 1940s and 1950s to an August-September peak for those born in the 1960s was observed. Groups of girls 8-14 and 15-17 yr old at menarche exhibited a seasonal difference in the pattern of menarche occurrence of about 6 months in relation to each other. Girls experiencing menarche during August-October were statistically significantly younger than those experiencing it at other times. Season of birth was not associated with season of menarche.^ The lengths of approximately 150,000 menstrual intervals of U.S. women were analyzed for seasonality. Menstrual intervals possibly disturbed by natural (e.g., childbirth) or other events (e.g., surgery, medication) were excluded. No 6- or 12-month rhythmicities were found for specific interval lengths (14-24, 25-31 and 32-56 days) or ages in relation to menstrual interval (9-11, 12-13, 15-19, 20-24, 25-39, 40-44 and 44 yr old and older).^ Hot flash data of 14 women experiencing natural menopause (NM) and 11 experiencing surgically-induced menopause (SIM) did not differ in frequency of hot flashes. Hot flashes in NM women exhibited 12- and 8-hr, but not 24-hr rhythmicities. Hot flashes in SIM women exhibited 24- and 12-hr, but not 8-hr, rhythmicities. Regardless of type of menopause, women with a peak frequency in hot flashes during the morning (0400 through 0950) were distinguishable from those with such in the evening (1600 through 2159).^ Data from approximately 200 U.S. women revealed a 6-month rhythm in menopause with first peak in May. No significant 12-month variation in menopause was detected by Cosinor analysis. Season of birth and age at menopause were not associated with season of menopause. Age at menopause declined significantly over the years for women born between 1907 and 1926, inclusive. ^
Resumo:
The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^
Resumo:
The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E$\sb2$ to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabelled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa. ^
Resumo:
Data from the Chicago Western Electric Study were used to investigate whether central fat distribution, as estimated by the ratio of subscapular-to-triceps skinfold, was associated with 25-year risk of death from coronary heart disease in a cohort of 1,945 middle-aged employed men. Subscapular-triceps skinfold ratio was found positively and significantly associated with risk of coronary death after adjustment for age and body mass index. The age-adjusted proportional hazards regression coefficient was 0.2078 with 95% confidence interval of 0.0087 to 0.4069. A difference of 1.1 in the subscapular-triceps skinfold ratio (the difference between the mean of the fifth quintile and of the first and second quintiles combined) was associated with a relative risk of 1.31 with 95% confidence interval of 1.06 to 1.62. The coefficient was decreased to 0.1961 (95% confidence interval of ($-$0.0028 to 0.3950) after adjustment for diastolic blood pressure, serum cholesterol and cigarette smoking as well as age and body mass index. At least some of the effect of central fat on coronary risk is probably mediated by blood pressure and serum lipids, but whether all of the effect can be accounted for blood pressure and serum lipids is uncertain.^ This study supports the concept that central fat distribution is a risk factor for 25-year risk of coronary death in middle-aged men. ^