992 resultados para Biochemical Changes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic kidney diseasemineral bone disorder (CKD-MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft-tissue calcification. Emerging evidence suggests that features of CKD-MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild-type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD-MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild-type mice. To capture the early molecular and cellular events in the progression of CKD-MBD we examined cell-specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor-Ser33/37-beta-catenin was observed both in mouse and human bones. Overall repression of Wnt/beta-catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF-?B ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late-stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD-MBD and suggest that repression of the Wnt/beta-catenin pathway is involved in the pathogenesis of renal osteodystrophy. (C) 2012 American Society for Bone and Mineral Research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Alzheimer Krankheit ist eine der häufigsten neurodegenerativen Erkrankungen, deren Ursache, abgesehen von einem geringen Prozentsatz vererbter Formen, bisher nicht bekannt ist. Ein wichtiges Ziel der Grundlagenforschung liegt derzeit in der Modulation der APP-spaltenden Enzyme. Durch die Modulation dieser Enzyme könnten weniger schädigende Amyloid β-Peptide entstehen. Die Aktivität des ECS ist in vielen neurodegenerativen Krankheiten verändert. Protektive Eigenschaften der Cannabinoidrezeptoren wurden bei der Alzheimer Krankheit beschrieben. Deshalb sollte in dieser Arbeit der Einfluss des ECS auf die Pathogenese der Alzheimer Erkrankung untersucht werden. In Zellkultursystemen wurde der Einfluss von Cannabinoiden auf die Prozessierung des Amyloid-Vorläuferproteins analysiert. Durch Inkubation der Zellen mit CB1-Rezeptor Agonisten konnte die APP-Prozessierung zugunsten von sAPPα moduliert werden. Gleichzeitig führte die Inkubation mit Cannabinoiden zur reduzierten Amyloid β Menge im Medium der Zellen. In dieser Arbeit konnte die APP-Prozessierung durch die Aktivierung des CB1-Rezeptors zugunsten des nicht-amyloiden Wegs moduliert werden.rnIn einem Tiermodell wurde der Einfluss des CB1-Rezeptors in APP23 transgenen Mäusen untersucht. Der Knockout des CB1-Rezeptors führte in APP23 transgenen Tieren zu weitreichenden biochemischen Veränderungen. APP23/CB1-/--Tiere zeigten eine erhöhte Mortalität und ein sehr geringes Durchschnittsgewicht. Im Vergleich zu APP23/CB1+/+-Tieren führte der CB1-Rezeptor Knockout zur Reduktion der APP-Expression und dessen Prozessierungsprodukten. In den histologischen Untersuchungen wurde eine reduzierte Anzahl an amyloiden Plaques, sowie eine reduzierte Neuroinflammation ermittelt. Biochemische Untersuchungen zeigten, dass der CB1-Rezeptor einen möglichen regulatorischen Einfluss auf die Expression und Prozessierung von APP ausübt. Die Tiere mit der geringsten Plaque-Menge (APP23/CB1-/-) und einer reduzierten Prozessierung von sAPPα- und den CTFs zeigten die schlechteste Lernleistung im Morris Water-Maze. Deshalb müssen andere Faktoren (z.B. die Degradation der Myelinschicht) für die schlechte Lernleistung verantwortlich sein. Mit einem zweiten Tiermodell könnte in CB1-Knockout Mäusen durch den viral-vermittelten Gentransfer eine mögliche Toxizität von Aβ Peptiden untersucht werden. Die in dieser Arbeit ermittelten Ergebnisse zeigen, dass der CB1-Rezeptor an der Regulation der APP-Prozessierung beteiligt ist und zu proteinbiochemischen Veränderungen im Zell- und Tiermodell führt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical and experimental observations suggest that platelet function deteriorates quickly with cell age. However, efforts to define age-dependent alterations have detected only modest biochemical changes occurring late in the cell life span. In this report, we demonstrate two significant alterations of the collagen response occurring during in vivo aging of canine platelets: a progressive increase in the EC50 for collagen types I, III and V and the emergence of a population of aged platelets which are refractory to collagen. Experiments with convulxin, a specific agonist for the collagen receptor glycoprotein VI (GPVI), also demonstrate an age-dependent decline in activation and the appearance of a non-reactive, aged population as observed with native collagens. Our studies indicate that canine platelets have two distinct binding levels for FITC-labeled convulxin and that the higher binding level disappears upon cell aging. During these studies one dog (#428) was identified whose platelets not only failed to demonstrate an age-dependent decrease in convulxin reactivity but also maintained a high convulxin-binding ability throughout their otherwise normal life span. Transfusion of biotinylated platelets from control dogs into dog #428 showed that the expected changes in collagen response and GPVI function did not occur in the transfused platelets. These observations demonstrate that the canine platelet response towards collagen is strongly dependent upon cell-age and suggest that this functional decline is at least partly due to an extrinsic-mediated alteration, possibly proteolytic, of GPVI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECT: Brain tissue acidosis is known to mediate neuronal death. Therefore the authors measured the main parameters of cerebral acid-base homeostasis, as well as their interrelations, shortly after severe traumatic brain injury (TBI) in humans. METHODS: Brain tissue pH, PCO2, PO2, and/or lactate were measured in 151 patients with severe head injuries, by using a Neurotrend sensor and/or a microdialysis probe. Monitoring was started as soon as possible after the injury and continued for up to 4 days. During the 1st day following the trauma, the brain tissue pH was significantly lower, compared with later time points, in patients who died or remained in a persistent vegetative state. Six hours after the injury, brain tissue PCO2 was significantly higher in patients with a poor outcome compared with patients with a good outcome. Furthermore, significant elevations in cerebral concentrations of lactate were found during the 1st day after the injury, compared with later time points. These increases in lactate were typically more pronounced in patients with a poor outcome. Similar biochemical changes were observed during later hypoxic events. CONCLUSIONS: Severe human TBI profoundly disturbs cerebral acid-base homeostasis. The observed pH changes persist for the first 24 hours after the trauma. Brain tissue acidosis is associated with increased tissue PCO2 and lactate concentration; these pathobiochemical changes are more severe in patients who remain in a persistent vegetative state or die. Furthermore, increased brain tissue PCO2 (> 60 mm Hg) appears to be a useful clinical indicator of critical cerebral ischemia, especially when accompanied by increased lactate concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Durante la madurez del fruto se producen cambios morfológicos, fisiológicos y bioquímicos provocados por la expresión regulada de diferentes genes. El objetivo de este trabajo fue verificar si la presencia de polipéptidos totales del pericarpio en los estados verde maduro (VM) y rojo maduro (RM) permite caracterizar la madurez del tomate. Se analizaron 18 líneas endocriadas recombinantes obtenidas por selección antagónica-divergente de un cruzamiento entre la cv. Caimanta (Solanum lycopersicum) y la entrada LA722 (S. pimpinellifolium), que fueron incluidas junto a la F1 como testigos experimentales. Los extractos proteicos se obtuvieron de dos muestras independientes de cada estado según el protocolo estándar y se resolvieron en SDS-PAGE. Se analizó la presencia/ausencia de bandas por genotipos y por estado, detectándose 26 en VM y 29 en RM. Algunas bandas fueron comunes entre estados, mientras que otras resultaron propias de VM o RM, respectivamente. Se calcularon las distancias de Jaccard y se realizó un análisis de conglomerados según el método UPGMA. En el dendrograma (correlación cofenética = 0,43) se distinguieron dos grandes grupos definidos por el estado de madurez. Se concluye que los perfiles proteicos del pericarpio son una herramienta postgenómica apropiada para identificar dos estados de madurez del fruto de tomate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on modeling approaches aimed at accounting for the effect of mechanical tension or compression on the axonal growth and subsequent soma migration. However, the reciprocal influence of the biochemical structural evolution on the mechanical properties has been mostly disregarded. We thus propose a new model aimed at providing the spatially dependent mechanical properties of the axon during its growth. Our in-house finite difference solver Neurite is used to describe the guanosine triphosphate (GTP) transport through the axon, its dephosphorylation in guanosine diphosphate (GDP), and thus the microtubules polymerization. The model is calibrated against experimental results and the tensile and bending mechanical stiffnesses are ultimately inferred from the spatially dependent microtubule occupancy. Such additional information is believed to be of drastic relevance in the growth cone vicinity, where biomechanical mechanisms are driving axonal growth and pathfinding. More specifically, the confirmation of a lower stiffness in the distal axon ultimately participates in explaining the controversy associated to the tensile role of the growth cone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal plasticity plays a very important role in brain adaptations to environmental stimuli, disease, and aging processes. The kainic acid model of temporal lobe epilepsy was used to study the long-term anatomical and biochemical changes in the hippocampus after seizures. Using Northern blot analysis, immunocytochemistry, and Western blot analysis, we have found a long-term elevation of the proconvulsive opioid peptide, enkephalin, in the rat hippocampus. We have also demonstrated that an activator protein-1 transcription factor, the 35-kDa fos-related antigen, can be induced and elevated for at least 1 year after kainate treatment. This study demonstrated that a single systemic injection of kainate produces almost permanent increases in the enkephalin and an activator protein-1 transcription factor, the 35-kDa fos-related antigen, in the rat hippocampus, and it is likely that these two events are closely associated with the molecular mechanisms of induction of long-lasting enhanced seizure susceptibility in the kainate-induced seizure model. The long-term expression of the proenkephalin mRNA and its peptides in the kainate-treated rat hippocampus also suggests an important role in the recurrent seizures of temporal lobe epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.