973 resultados para Biochemical effects of ethanol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An on-line controlled 7 1 sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degreesC, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 muE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laurencia terpenoid extract (LET) had been extracted from the red alga Laurencia tristicha. The study is to investigate the effects of LET supplementation on DNA oxidation and alkylation damages in mice. Forty healthy kunming mice weighing between 18g and 25g were randomly assigned into 4 groups, each consisting of ten animals. The mice were orally intubated respectively for 60 days with the designed concentrations of LET (25, 50, 100 mg/kg b.w.) for three exposed groups and salad oil (0.2 ml) for the blank group. Food and water were free for the animals. Mice in the blank and exposed groups were sacrificed after the last treatment and the blood of each animal was quickly taken for further experiments. The spontaneous and oxidized DNA damages of peripheral lymphocytes induced by H2O2 were analysed by SCGE. O-6-Methy-guanine (O-6-MeG) was measured by high performance capillary zone electrophoresis. There was no significantly difference in DNA spontaneous damage on peripheral lymphocytes of all the mice. The oxidative DNA damage in the 50 mg/Kg body weight supplement group are 286AU with the oxidation of 10 mu mol/L H2O2, significantly lower than the blank group 332AU (p<0.05). The contents of O-6-MeG in plasma in the 50mg/kg b.w. and 100mg/kg b.w. supplement group were 1.50 mu mol/L andl.88 mu mol/L, significantly lower than that of the blank group, which was 2.89 mu mol/L(p<0.05). The results from the present study indicated that the LET were rich in terpenoids and safety to be taken orally and it could improve antioxidative and decrease DNA damage effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a natural gradient of dissolved organic carbon (DOC) source and concentration in rivers of northern Florida, we investigated how terrestrially-derived DOC affects denitrification rates in river sediments. Specifically, we examined if the higher concentrations of DOC in blackwater rivers stimulate denitrification, or whether such terrestrially-derived DOC supports lower denitrification rates because (1) it is less labile than DOC from aquatic primary production; whether (2) terrestrial DOC directly inhibits denitrification via biochemical mechanisms; and/or whether (3) terrestrial DOC indirectly inhibits denitrification via reduced light availability to-and thus DOC exudation by-aquatic primary producers. We differentiated among these mechanisms using laboratory denitrification assays that subjected river sediments to factorial amendments of NO3- and dextrose, humic acid dosing, and cross-incubations of sediments and water from different river sources. DOC from terrestrial sources neither depressed nor stimulated denitrification rates, indicating low lability of this DOC but no direct inhibition; humic acid additions similarly did not affect denitrification rates. However, responses to addition of labile C increased with long-term average DOC concentration, which supports the hypothesis that terrestrial DOC indirectly inhibits denitrification via decreased autochthonous production. Observed and future changes in DOC concentration may therefore reduce the ability of inland waterways to remove reactive nitrogen. 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7)M native GIP, with an IC50 value of 2.6 muM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P &lt;0.05 to P &lt;0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P &lt;0.001) and lower the glycemic excursion (1.5-fold decrease; P &lt;0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compared non-shivering thermogenesis between two adjacent populations of the common spiny mouse Acomys cahirinus from different habitats, in relation to increasing salinity. Individuals were captured from the north- and south-facing slopes of the same valley, that represent

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effects of decreased levels of the complex between glycoprotein VI (GPVI) and the Fc receptor gamma-chain (FcRgamma) on responses to collagen and GPVI-specific ligands in murine platelets. We show that levels of GPVI-FcRgamma of the order of 50 % and 20 % of wild-type levels caused 2- and 5-fold shifts to the right respectively in the dose-response curve for aggregation in response to collagen, the snake toxin convulxin and the monoclonal antibody JAQ1. In addition, there is a delay in the onset of aggregation in response to collagen. In contrast, the stimulation of protein tyrosine phosphorylation by collagen (as measured after 150 s) and adhesion to a collagen-coated surface under static conditions were unaffected in platelets with 50 % and 20 % of wild-type levels of GPVI. In contrast, responses to a collagen-related peptide (CRP), made up of repeat glycine-proline-hydroxyproline motifs, were markedly inhibited and abolished in platelets expressing 50 % and 20 % of wild-type levels of GPVI respectively. We suggest that the marked effect of a reduction in GPVI levels on the CRP-induced activation of platelets is due to the multivalent nature of CRP and the fact that GPVI is its sole receptor on platelets. Thus it appears that the interaction of CRP with GPVI is determined by a combination of affinity and avidity. The observation that collagen does not behave like CRP in platelets expressing reduced levels of GPVI, even in the combined presence of blocking antibodies against integrin alpha2beta1 and GPV, suggests that collagen has a greater affinity than CRP for GPVI, and/or that other receptors are involved in its binding to platelets. The clinical significance of these results is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential use of biochemical and physiological responses as biomarkers of organophosphate exposure and/or effect were assessed in the shore crab (Carcinus maenas). Male crabs were assigned to one of four dimethoate treatments (0, 0.5, 1.0 or 2.0 mg 1(-1)). Cardiac activity was measured non-invasively before and during dimethoate exposure using automated interpulse duration assessment. Heart rates decreased significantly in a concentration-dependent manner (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme -galactosidase were studied. At modest concentrations (0 to 2M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V (max), to fall and the Michaelis constant, K (m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191mM). In the case of the ethanol- or propanol-inhibited -galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control.Objective: To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on -glucosidase activity and glucose diffusion.Methods: The in vitro effects chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on - glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect.Results: Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on -glucosidase activity (26.2% less mmol/L glucose production than control, p &lt; 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively).Conclusions: The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, a systems biology approach is both a challenge as well as believed to be the ideal form of understanding the organisms mechanisms of response. Responses at different levels of biological organization should be integrated to better understand the mechanisms, and hence predict the effects of stress agents, usable in broader contexts. The main aim of this thesis was to evaluate the underlying mechanisms of Enchytraeus albidus responses to chemical stressors. Therefore, there was a large investment on the gene library enrichment for this species, as explained ahead. Overall, effects of chemicals from two different groups (metals and pesticides) were assessed at different levels of biological organization: from genes and biochemical biomarkers to population endpoints. Selected chemicals were: 1) the metals cadmium and zinc; 2) the insecticide dimethoate, the herbicide atrazine and the fungicide carbendazim. At the gene and sub-cellular level, the effects of time and dosage were also adressed. Traditional ecotoxicological tests - survival, reproduction and avoidance behavior - indicated that pesticides were more toxic than metals. Avoidance behaviour is extremely important from an ecological point of view, but not recommended to use for risk assessment purposes. The oxidative stress related experiment showed that metals induced significant effects on several antioxidant enzyme activities and substrate levels, as well as oxidative damage on the membrane cells. To increase the potential of our molecular tool to assess transcriptional responses, the existing cDNA library was enriched with metal and pesticide responding genes, using Suppression Subtractive Hybridization (SSH). With the sequencing information obtained, an improved Agilent custom oligonucleotide microarray was developed and an EST database, including all existing molecular data on E. albidus, was made publicly available as an interactive tool to access information. With this microarray tool, most interesting and novel information on the mechanisms of chemical toxicity was obtained, with the identification of common and specific key pathways affected by each compound. The obtained results allowed the identification of mechanisms of action for the tested compounds in E. albidus, some of which are in line with the ones known for mammals, suggesting across species conserved modes of action and underlining the usefulness of this soil invertebrate as a model species. In general, biochemical and molecular responses were influenced by time of exposure and chemical dosage and these allowed to see the evolution of events. Cellular energy allocation results confirmed the gene expression evidences of an increased energetic expenditure, which can partially explain the decrease on the reproductive output, verified at a later stage. Correlations found throughout this thesis between effects at the different levels of biological organization have further improved our knowledge on the toxicity of metals and pesticides in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20C and 25C) showed different response patterns. It was also observed that dimethoates degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last century mean global temperatures have been increasing. According to the predictions, the temperature change is expected to exceed 1.5C in this century and the warming is likely to continue. Freshwater ecosystems are among the most sensitive mainly due to changes in the hydrologic cycle and consequently changes in several physico-chemical parameters (e.g. pH, dissolved oxygen). Alterations in environmental parameters of freshwater systems are likely to affect distribution, morphology, physiology and richness of a wide range of species leading to important changes in ecosystem biodiversity and function. Moreover, they can also work as co-stressors in environments where organisms have already to cope with chemical contamination (such as pesticides), increasing the environmental risk due to potential interactions. Therefore, the objective of this work was to evaluate the effects of climate change related environmental parameters on the toxicity of pesticides to zebrafish embryos. The following environmental factors were studied: pH (3.0-12.0), dissolved oxygen level (0-8 mg/L) and UV radiation (0-500 mW/m2). The pesticides studied were the carbamate insecticide carbaryl and the benzimidazole fungicide carbendazim. Stressors were firstly tested separately in order to derive concentration- or intensity-response curves to further study the effects of binary combinations (environmental factors x pesticides) by applying mixture models. Characterization of zebrafish embryos response to environmental stress revealed that pH effects were fully established after 24 h of exposure and survival was only affected at pH values below 5 and above 10. Low oxygen levels also affected embryos development at concentrations below 4 mg/L (delay, heart rate decrease and edema), and at concentrations below 0.5 mg/L the survival was drastically reduced. Continuous exposure to UV radiation showed a strong time-dependent impact on embryos survival leading to 100% of mortality after 72 hours of exposure. The toxicity of pesticides carbaryl and carbendazim was characterized at several levels of biological organization including developmental, biochemical and behavioural allowing a mechanistic understanding of the effects and highlighting the usefulness of behavioural responses (locomotion) as a sensitive endpoint in ecotoxicology. Once the individual concentration response relationship of each stressor was established, a combined toxicity study was conducted to evaluate the effects of pH on the toxicity of carbaryl. We have shown that pH can modify the toxicity of the pesticide carbaryl. The conceptual model concentration addition allowed a precise prediction of the toxicity of the jointeffects of acid pH and carbaryl. Nevertheless, for alkaline condition both concepts failed in predicting the effects. Deviations to the model were however easy to explain as high pH values favour the hydrolysis of carbaryl with the consequent formation of the more toxic degradation product 1- naphtol. Although in the present study such explanatory process was easy to establish, for many other combinations the interactive nature is not so evident. In the context of the climate change few scenarios predict such increase in the pH of aquatic systems, however this was a first approach focused in the lethal effects only. In a second tier assessment effects at sublethal level would be sought and it is expectable that more subtle pH changes (more realistic in terms of climate changes scenarios) may have an effect at physiological and biochemical levels with possible long term consequences for the population fitness.