981 resultados para Binding Sites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This report describes the 3D structure of Arabidopsis thaliana AHAS in complex with five sulfonylureas (to 2.5 angstrom resolution) and with the imidazolinone, imazaquin (IQ; 2.8 angstrom). Neither class of molecule has a structure that mimics the substrates for the enzyme, but both inhibit by blocking a channel through which access to the active site is gained. The sulfonylureas approach within 5 angstrom of the catalytic center, which is the C2 atom of the cofactor thiamin diphosphate, whereas IQ is at least 7 angstrom from this atom. Ten of the amino acid residues that bind the sulfonylureas also bind IQ. Six additional residues interact only with the sulfonylureas, whereas there are two residues that bind IQ but not the sulfonylureas. Thus, the two classes of inhibitor occupy partially overlapping sites but adopt different modes of binding. The increasing emergence of resistant weeds due to the appearance of mutations that interfere with the inhibition of AHAS is now a worldwide problem. The structures described here provide a rational molecular basis for understanding these mutations, thus allowing more sophisticated AHAS inhibitors to be developed. There is no previously described structure for any plant protein in complex with a commercial herbicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of agents with differing selectivity profiles for the non-a2 adrenoceptor binding site (NAIBS), imidazoline preferring receptor (IPR) and a2-adrenoceptor were employed in a series of behavioural and neurochemical experiments to determine a functional role for the former two sites. The highly selective NAIBS ligand RX801 077 produced an increase in rat brain extracellular noradrenaline (NA) levels, as determined by the technique of in vivo microdialysis, which may underlie its ability to produce a discriminable cue in the same species. This increase in NA may be due to a suggested link between the NAIBS and the monoamine oxidase inhibitor (MAOI) activity of RX801 077. For instance, the RX801 077 cue was substituted for by the MAOI drugs pargyline and moclobemide, which themselves down regulate NAIBS when administered chronically. RX811 059 substituted for the RX801 077 cue which may be due its ability to stimulate NA release via its activity as a highly selective a2-adrenoceptor antagonist. An effect upon NA output may also explain the ability of RX801 077 to 'mimic' the anti-immobility effect of the antidepressant drug desmethylimipramine (DMJ) in the forced swimming test. Further studies are therefore required to examine a possible role for the NAIBS in the treatment of depression. Discriminable cues were also produced by RX811 059 and the a2- adrenoceptor agonist clonidine, probably as a consequence of their respective ability to stimulate and inhibit NA output via their opposing activity at a2-adrenoceptors. The IPR has been suggested to play a role in mediating the hypotensive effect of clonidine, although a precise role was unable to be established for this site in the present studies due to the unavailability of highly selective IPA agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homology modelling was used to generate three-dimensional structures of the nucleotide-binding domains (NBDs) of human ABCB1 and ABCG2. Interactions between a series of steroidal ligands and transporter NBDs were investigated using an in silico docking approach. C-terminal ABCB1 NBD (ABCB1 NBD2) was predicted to bind steroids within a cavity formed partly by the P-Loop, Tyr1044 and Ile1050. The P-Loop within ABCG2 NBD was also predicted to be involved in steroid binding. No overlap between ATP- and RU-486-binding sites was predicted in either NBD, though overlaps between ATP- and steroid-binding sites were predicted in the vicinity of the P-Loop in both nucleotide-binding domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restriction enzyme inhibition and lambda exonuclease studies indicate that carcinogen N-acetoxy-N-acetyl-2 aminofluorene (AAAF) binds to sequences on ɸX174 RF and SV40 plasmids DNA that are similar to the eight preferred binding sites previously located on pBR 322. Both DNAs were digested with enzyme Hinf I and resultant fragments 32P end-labeled. Labeled fragments were reacted with the carcinogen to give one to sixteen bound moieties per DNA. Fragments were isolated and restriccion enzyme and lambda exonuclease inhibition assays were performed. Inhibition detected occurred at selected sites and was not specific for a certain enzyme or certain size of recognition sequence. Results of these assays allow mapping of the location of high affinity binding sites of the carcinogen on both DNAs. All sites have common sequence elements: the presence of either the sequence T(G/C)TT(G/C) or the sequence T(G/C) CTT(G/C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis and optical properties of four new triarylborane-dipyrromethane (TAB-DPM) conjugates (3a-d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F-ion. The NMR titrations show that the anions bind to the TAB-DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Equations to describe the two sites binding between proteins and ligands were deduced. According to these equations, not only the binding constants, but also the mole fraction of proteins in different forms could be obtained. Using the published data on the interaction between human serum albumin (HSA) and three kinds of porphyrin (coproporphyrin (CP), uroporphyrin I (UP) and protoporphyrin (PP)), a further study on their binding was carried out. It was concluded that there may exist two binding sites with the binding constants at the first site. proved to be the preferential one, being 6.50 x 10(5) 1.94 x 10(6) and 8.94 x 10(5). respectively. In addition. it was also demonstrated that the two binding sites of HSA with CP and UP might be of different kinds, though those of HSA and PP were of the same kind but at different positions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecularbasis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct phannacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between pentagalloyl glucose (PGG) and two globular proteins, bovine serum albumin (BSA) and ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), was investigated by isothermal titration calorimetry (ITC). ITC data fit to a binding model consisting of two sets of multiple binding sites, which reveal similarities in the mode of binding of PGG to BSA and rubisco. In both cases, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface, which promotes aggregation and precipitation of the PGG-protein complex. This model was confirmed by turbidimetry analysis of the PGG-BSA interaction. Analysis of tryptophan fluorescence quenching during the interaction of PGG with BSA suggests that binding of PGG leads to some conformational changes that are energetically closer to the unfolded state of the BSA structure, because small red shifts in the resulting emission spectra were observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of CCAAT/enhancer binding proteins (C/EBPs) and binding sites for HIV-1 replication in primary macrophages, T cell lines and primary CD4+ T cells was examined. When lines overexpressing the C/EBP dominant-negative protein LIP were infected with HIV-1, replication occurred in Jurkat T cells but not in U937 promonocytes, demonstrating a requirement for C/EBP activators by HIV-1 only in promonocytes. Primary macrophages did not support the replication of HIV-1 harboring mutant C/EBP binding sites in the long terminal repeat but Jurkat, H9 and primary CD4+ T cells supported replication of wild-type and mutant HIV-1 equally well. Thus the requirement for C/EBP sites is also confined to monocyte/macrophages. The requirement for C/EBP proteins and sites identifies the first uniquely macrophage-specific regulatory mechanism for HIV-1 replication.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.