958 resultados para Binders and adhesives
Resumo:
The printing of pastes (solder pastes and isotropic conductive adhesives) through very small stencil apertures required for flip-chip pitch sizes is expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit board pads. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance.
Resumo:
The need for chemical and biological entities of predetermined selectivity and affinity towards target analytes is greater than ever, in applications such as environmental monitoring, bioterrorism detection and analysis of natural toxin contaminants in the food chain.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.
Resumo:
The primary objective of this investigation has been to develop more efficient and low cost adhesives for bonding various elastomer combinations particularly NR to NR, NR/PB to NR/PB, CR to CR,NR to CR and NR to NBR.A significant achievement of the investigation was the development of solventless and environment friendly solid adhesives for NR to NR and NR/PB to NR/PB particularly for precured retreading. Conventionally used adhesives in this area are mostly NR based adhesive strips in the presence of a dough. The study has shown that an ultra accelerator could be added to the dough just before applying it on the tire which can significantly bring down the retreading time resulting in prolonged tire service and lower energy consumption. Further latex reclaim has been used for the preparation of the solid strip which can reduce the cost considerably.Another significant finding was that by making proper selection of the RF resin, the efficiency and shelflife of the RFL adhesive used for nylon and rayon tire cord dipping can be improved. In the conventionally used RFL adhesive, the resin once prepared has to be added to the latex within 30 minutes and the RFL has to be used after 4 hours maturation time maximum shelf life of the RFL dip solution being 72 hours. In this study a formaldehyde deficient resin was used and hence more flexibility was available for mixing with latex and maturing. It also has a much longer shelf life. In the method suggested in this study, formaldehyde donors were added only in the rubber compound to make up the formaldehyde deficiency in the RFL. The results of this investigation show that the pull through load by employing this method and the conventional method are comparable. This study has also shown that the amount of RF resin with RFL adhesive can be partially replaced by other modifying agents for cost reduction.Cashew nut shell liquid (CNSL) resin can be employed for improving the bonding of dipped nylon and rayon cord with NR.Since CNSL resin cannot be added in the dip solution since it is not soluble in water, it was added in the rubber compound. The amount of wood rosin in the rubber compound can be reduced by using CNSL resin.Another interesting result of the investigation was the use of CR based adhesive modified with chlorinated natural rubber for CR to CR bonding. Addition of chlorinated natural rubber was found to improve sea water resistance of CR based adhesive. In the bonding of a polar rubber like nitrile rubber or polychloroprene rubber to a non polar rubber like natural rubber, an adhesive based on polychloroprene rubber was found to be effective.
Resumo:
Statement of problem. Sealing ability and bond strengths of total-etch and self-etch dentin adhesives used for immediate dentin sealing have not been assessed and established.Purpose. The purpose of this study was to determine the effectiveness of immediate dentin sealing (IDS) using total-etch or self-etch dentin adhesives on microleakage and microtensile bond strength.Material and methods. Twenty recently extracted molars were selected, and standard MOD inlay preparations were made with the gingival margins located below the cemento-enamel unction. The teeth were assigned to 4 experimental groups (n=5) according to the indirect composite restoration cementation technique used: (1) immediate dentin sealing with Adper Single Bond (TEBI); (2) conventional adhesive cementation technique using Adper Single Bond (TEAI); (3) immediate dentin sealing using Adper Prompt L-Pop (SEBI); or (4) conventional adhesive cementation technique using Adper Prompt L-Pop (SEAI). The restored teeth were thermal cycled 1,000 times between 5 degrees and 55 degrees C and then immersed in 50% ammoniacal silver nitrate. Three specimens per restoration were evaluated for microleakage, according to predefined scores, and submitted to Friedman's test (alpha-.05). The specimens were then sectioned to obtain 0.8 +/- 0.2-mm-thick sticks (with n ranging from 32 to 57 specimens) and submitted to microtensile bond strength (mu TBS) testing. The obtained data were submitted to 2-way ANOVA test (alpha=.05).Results. None of the experimental groups demonstrated complete elimination of marginal microleakage. There were significant differences in microleakage of the tested adhesives (P>.001). IDS microleakage scores were similar to those obtained using the conventional cementation technique (CCT) for both adhesives. The highest mean bond strengths were obtained with TEBI (51.1 MPa), whereas SEAI showed the lowest mean bond strengths (1.7 MPa). IDS resulted in significantly higher bond strengths than CCT (P<.001).Conclusions. Total-etch and self-etch adhesives have a significant effect on IDS. IDS resulted in high bond strengths for both adhesives; however, the microleakage was similar to that obtained with CCT (J Prosthet Dent 2009;102:1-9)
Resumo:
The effect of application methods and dentin hydration on the bond strength of three self-etching adhesives (SEA) were evaluated; 195 extracted bovine incisors were used. The buccal surface was ground in order to expose the dentin, which remained 2-mm minimum thickness, measured by a thickness meter through an opening on the lingual surface. Adper Single Bond 2 (TM) was used for the control group. The SEA were applied following two modes of application: passive or active and two hydration states of the dentin surface-dry and wet. After light-curing, composite buildups were made using Grandio (TM) composite. The specimens were sectioned and tested with a microtensile bond strength test. The application method and the hydration state resulted in statistical differences (p = 0.000) making the values of active application for mu TBS to dentin higher than passive application. The wet surfaces showed higher mu TBS to dentin ratios than dry surfaces. There were no statistical differences in mu TBS among the SEA tested but there were differences regarding to control group.
Resumo:
Purpose: To evaluate the effect of surface hydration state and application method on the microtensile bond strength of one-step self-etching adhesives systems to cut enamel.Materials and Methods: One hundred ninety-five bovine teeth were used. The enamel on the buccal side was flattened with 600-grit SiC paper. For the control group, 15 teeth received Adper Single Bond 2, applied according to manufacturer's recommendations. The other specimens were divided into three groups according to the adhesive system used: Futura Bond M (FM; Voco), Clearfil S-3 Bond (CS; Kuraray), and Optibond All in One (OA; Kerr). For each group, two hydration states were tested: D: blown dry with air; W: the excess of water was removed with absorbent paper. Two application methods were tested: P (passive): the adhesive was simply left on the surface; A (active): the adhesive was rubbed with an applicator point. A coat of Grandio composite resin (Voco) was applied on the surface. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm), which underwent microtensile bond testing. The data in MPa were submitted to a three-way ANOVA and Tukey's test (alpha = 5%).Results: The ANOVA showed significant differences for application method and the type of adhesive, but not for hydration state. For the application method, the results of Tukey's test were: P: 31.46 (+/-7.09)a; A: 34.04 (+/-7.19)b. For the type of adhesive, the results were: OA: 31.29 (+/-7.05)a; CS: 32.28 (+/-7.14)a; FM: 34.68 (+/-7.17)b; different lower-case letters indicate statistically significant differences.Conclusion: Active application improved the bond strength to cut enamel. The adhesive Futurabond M showed the highest bond strength to cut enamel.
Resumo:
Objectives: To evaluate the microtensile bond strength (mu TBS) of one-(Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n = 10). The restored teeth were stored in distilled water at 37 C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to mu TBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The mu TBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha = 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p < 0.001). All eight experimental means (MPa) were compared by the Tukey's test (p < 0.05) and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4 +/- 7.3); Tyrian-One Step Plus /Variolink II/24 h (39.4 +/- 11.6); Xeno III/C&B/24 h (40.3 +/- 12.9); Xeno III/Variolink II/24 h (25.8 +/- 10.5); Tyrian-One Step Plus / C&B/90 d (22.1 +/- 12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2 +/- 14.2); Xeno III/C&B/90 d (27.0 +/- 13.5); Xeno III/Variolink II/90 d (33.0 +/- 8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.
Resumo:
Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min(-1)). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). Results: the anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7 +/- 7.1(a); PB+Z100 = 23.8 +/- 5.7(a)). However, with use of the chemically activated composite (B2B), PB (7.8 +/- 3.6(b) MPa) showed significantly lower dentin bond strengths than OS (32.2 +/- 7.6(a)). Conclusion: the low pH of the adhesive system can affect the bond of chemically activated composite to dentin. on the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.
Resumo:
The aim of this study was to compare the bond strength to enamel between resin cements combined with total-etch and self-etch adhesive systems and a self-adhesive cement. Eighty bovine incisors had their buccal surface ground flat exposing a plane area in the enamel. Eighty Artglass resin cylinders measuring 3 mm in diameter and 4 mm in height were fabricated. The teeth were divided into eight groups of 10 teeth each and the resin cylinders were cemented with different adhesive systems and resin cements; G1: RelyX Unicem (self-adhesive cement); G2: H 3PO 4 + Single Bond + RelyX ARC; G3: AdheSE + Variolink II; G4: H 3PO 4 + Excite + Variolink II; G5: Xeno III + Enforce; G6: H 3PO 4 + Prime&Bond NT + Enforce; G7: Biatite Primers 1 and 2 + Bistite II DC; G8: H 3PO 4 + Bistite Primers 1 and 2 + Bistite II DC. After application of the adhesives, the cylinders were cemented according to manufacturer instructions. The specimens were submitted to 2000 thermal cycles at a temperature ranging from 5±5°C to 55±5°C, and shear bond strength was then tested at a variety of 1 mm/min. The data were analyzed by ANOVA and the Tukey's test (á=5%), obtaining a p value of 0.00. The following mean (±standard deviation) bond strength values were observed for each group: G1: 5.14(±0.99)a; G3: 16.23(±4.69)b; G7: 17.82(±3.66)b; G5: 18.48(±2.88)bc; G8: 20.15(±4.12)bc; G4: 22.85(±3.08)cd; G2: 24.96(±2.89)d; G6: 26.07(±1.69)d. Groups followed by the same letters did not differ significantly. For most of the resin cements tested, the application of adhesive systems using acid etching resulted in a higher bond strength when compared to the self-etch adhesive systems and to the self-adhesive cement.