977 resultados para Binary choice models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The author analyzes the localization procedures of the vector of weighting coefficients which are based on presenting the function of value by additive reduction adapted to fuzzy models of choice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. ^ This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. ^ The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Over the past decade, physician-rating websites have been gaining attention in scientific literature and in the media. However, little knowledge is available about the awareness and the impact of using such sites on health care professionals. It also remains unclear what key predictors are associated with the knowledge and the use of physician-rating websites. OBJECTIVE: To estimate the current level of awareness and use of physician-rating websites in Germany and to determine their impact on physician choice making and the key predictors which are associated with the knowledge and the use of physician-rating websites. METHODS: This study was designed as a cross-sectional survey. An online panel was consulted in January 2013. A questionnaire was developed containing 28 questions; a pretest was carried out to assess the comprehension of the questionnaire. Several sociodemographic (eg, age, gender, health insurance status, Internet use) and 2 health-related independent variables (ie, health status and health care utilization) were included. Data were analyzed using descriptive statistics, chi-square tests, and t tests. Binary multivariate logistic regression models were performed for elaborating the characteristics of physician-rating website users. Results from the logistic regression are presented for both the observed and weighted sample. RESULTS: In total, 1505 respondents (mean age 43.73 years, SD 14.39; 857/1505, 57.25% female) completed our survey. Of all respondents, 32.09% (483/1505) heard of physician-rating websites and 25.32% (381/1505) already had used a website when searching for a physician. Furthermore, 11.03% (166/1505) had already posted a rating on a physician-rating website. Approximately 65.35% (249/381) consulted a particular physician based on the ratings shown on the websites; in contrast, 52.23% (199/381) had not consulted a particular physician because of the publicly reported ratings. Significantly higher likelihoods for being aware of the websites could be demonstrated for female participants (P<.001), those who were widowed (P=.01), covered by statutory health insurance (P=.02), and with higher health care utilization (P<.001). Health care utilization was significantly associated with all dependent variables in our multivariate logistic regression models (P<.001). Furthermore, significantly higher scores could be shown for health insurance status in the unweighted and Internet use in the weighted models. CONCLUSIONS: Neither health policy makers nor physicians should underestimate the influence of physician-rating websites. They already play an important role in providing information to help patients decide on an appropriate physician. Assuming there will be a rising level of public awareness, the influence of their use will increase well into the future. Future studies should assess the impact of physician-rating websites under experimental conditions and investigate whether physician-rating websites have the potential to reflect the quality of care offered by health care providers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current study investigated whether 4- to 6-year-old children’s task solution choice was influenced by the past proficiency of familiar peer models and the children’s personal prior task experience. Peer past proficiency was established through behavioral assessments of interactions with novel tasks alongside peer and teacher predictions of each child’s proficiency. Based on these assessments, one peer model with high past proficiency and one age-, sex-, dominance-, and popularity-matched peer model with lower past proficiency were trained to remove a capsule using alternative solutions from a three-solution artificial fruit task. Video demonstrations of the models were shown to children after they had either a personal successful interaction or no interaction with the task. In general, there was not a strong bias toward the high past-proficiency model, perhaps due to a motivation to acquire multiple methods and the salience of other transmission biases. However, there was some evidence of a model-based past-proficiency bias; when the high past-proficiency peer matched the participants’ original solution, there was increased use of that solution, whereas if the high past-proficiency peer demonstrated an alternative solution, there was increased use of the alternative social solution and novel solutions. Thus, model proficiency influenced innovation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims. The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods. We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the (COBOLD)-B-5 model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results. We find a metallicity of [Fe/H] similar to -3.6 for both stars, using 1D models with 3D corrections of similar to -0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] similar to 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [alpha/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] less than or similar to 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions. The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A( Li) at the lowest metallicities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The distribution of chemical abundances and their variation with time are important tools for understanding the chemical evolution of galaxies. In particular, the study of chemical evolution models can improve our understanding of the basic assumptions made when modelling our Galaxy and other spirals. Aims. We test a standard chemical evolution model for spiral disks in the Local Universe and study the influence of a threshold gas density and different efficiencies in the star formation rate (SFR) law on radial gradients of abundance, gas, and SFR. The model is then applied to specific galaxies. Methods. We adopt a one-infall chemical evolution model where the Galactic disk forms inside-out by means of infall of gas, and we test different thresholds and efficiencies in the SFR. The model is scaled to the disk properties of three Local Group galaxies (the Milky Way, M31 and M33) by varying its dependence on the star formation efficiency and the timescale for the infall of gas onto the disk. Results. Using this simple model, we are able to reproduce most of the observed constraints available in the literature for the studied galaxies. The radial oxygen abundance gradients and their time evolution are studied in detail. The present day abundance gradients are more sensitive to the threshold than to other parameters, while their temporal evolutions are more dependent on the chosen SFR efficiency. A variable efficiency along the galaxy radius can reproduce the present day gas distribution in the disk of spirals with prominent arms. The steepness in the distribution of stellar surface density differs from massive to lower mass disks, owing to the different star formation histories. Conclusions. The most massive disks seem to have evolved faster (i.e., with more efficient star formation) than the less massive ones, thus suggesting a downsizing in star formation for spirals. The threshold and the efficiency of star formation play a very important role in the chemical evolution of spiral disks. For instance, an efficiency varying with radius can be used to regulate the star formation. The oxygen abundance gradient can steepen or flatten in time depending on the choice of this parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a family of algorithms for approximate inference in credal networks (that is, models based on directed acyclic graphs and set-valued probabilities) that contain only binary variables. Such networks can represent incomplete or vague beliefs, lack of data, and disagreements among experts; they can also encode models based on belief functions and possibilistic measures. All algorithms for approximate inference in this paper rely on exact inferences in credal networks based on polytrees with binary variables, as these inferences have polynomial complexity. We are inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U algorithm resembles Loopy Belief Propagation, while the Iterated Partial Evaluation and Structured Variational 2U algorithms are, respectively, based on Localized Partial Evaluation and variational techniques. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.