979 resultados para Bilevel programming problem


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Khutoretsky dealt with the problem of maximising a linear utility function (MUF) over the set of short-term equilibria in a housing market by reducing it to a linear programming problem, and suggested a combinatorial algorithm for this problem. Two approaches to the market adjustment were considered: the funding of housing construction and the granting of housing allowances. In both cases, locally optimal regulatory measures can be developed using the corresponding dual prices. The optimal effects (with the regulation expenditures restricted by an amount K) can be found using specialised models based on MUF: a model M1 for choice of the optimum structure of investment in housing construction, and a model M2 for optimum distribution of housing allowances. The linear integer optimisation problems corresponding to these models are initially difficult but can be solved after slight modifications of the parameters. In particular, the necessary modification of K does not exceed the maximum construction cost of one dwelling (for M1) or the maximum size of one housing allowance (for M2). The result is particularly useful since slight modification of K is not essential in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Determining the profit maximizing input-output bundle of a firm requires data on prices. This paper shows how endogenously determined shadow prices can be used in place of actual prices to obtain the optimal input-output bundle where the firm.s shadow profit is maximized. This approach amounts to an application of the Weak Axiom of Profit Maximization (WAPM) formulated by Varian (1984) based on shadow prices rather than actual prices. At these prices the shadow profit of a firm is zero. Thus, the maximum profit that could have been attained at some other input-output bundle is a measure of the inefficiency of the firm. Because the benchmark input-output bundle is always an observed bundle from the data, it can be determined without having to solve any elaborate programming problem. An empirical application to U.S. airlines data illustrates the proposed methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo do presente trabalho é a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo (FPO), onde existe a necessidade de se considerar as variáveis de controle associadas aos taps de transformadores em-fase e chaveamentos de bancos de capacitores e reatores shunt como variáveis discretas e existe a necessidade da limitação, e/ou até mesmo a minimização do número de ações de controle. Neste trabalho, o problema de FPO será abordado por meio de três estratégias. Na primeira proposta, o problema de FPO é modelado como um problema de Programação Não Linear com Variáveis Contínuas e Discretas (PNLCD) para a minimização de perdas ativas na transmissão; são propostas três abordagens utilizando funções de discretização para o tratamento das variáveis discretas. Na segunda proposta, considera-se que o problema de FPO, com os taps de transformadores discretos e bancos de capacitores e reatores shunts fixos, possui uma limitação no número de ações de controles; variáveis binárias associadas ao número de ações de controles são tratadas por uma função quadrática. Na terceira proposta, o problema de FPO é modelado como um problema de Otimização Multiobjetivo. O método da soma ponderada e o método ε-restrito são utilizados para modificar os problemas multiobjetivos propostos em problemas mono-objetivos. As variáveis binárias associadas às ações de controles são tratadas por duas funções, uma sigmoidal e uma polinomial. Para verificar a eficácia e a robustez dos modelos e algoritmos desenvolvidos serão realizados testes com os sistemas elétricos IEEE de 14, 30, 57, 118 e 300 barras. Todos os algoritmos e modelos foram implementados em General Algebraic Modeling System (GAMS) e os solvers CONOPT, IPOPT, KNITRO e DICOPT foram utilizados na resolução dos problemas. Os resultados obtidos confirmam que as estratégias de discretização são eficientes e as propostas de modelagem para variáveis binárias permitem encontrar soluções factíveis para os problemas envolvendo as ações de controles enquanto os solvers DICOPT e KNITRO utilizados para modelar variáveis binárias não encontram soluções.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This multidisciplinary study concerns the optimal design of processes with a view to both maximizing profit and minimizing environmental impacts. This can be achieved by a combination of traditional chemical process design methods, measurements of environmental impacts and advanced mathematical optimization techniques. More to the point, this paper presents a hybrid simulation-multiobjective optimization approach that at once optimizes the production cost and minimizes the associated environmental impacts of isobutane alkylation. This approach has also made it possible to obtain the flowsheet configurations and process variables that are needed to manufacture isooctane in a way that satisfies the above-stated double aim. The problem is formulated as a Generalized Disjunctive Programming problem and solved using state-of-the-art logic-based algorithms. It is shown, starting from existing alternatives for the process, that it is possible to systematically generate a superstructure that includes alternatives not previously considered. The optimal solution, in the form a Pareto curve, includes different structural alternatives from which the most suitable design can be selected. To evaluate the environmental impact, Life Cycle Assessment based on two different indicators is employed: Ecoindicator 99 and Global Warming Potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Está ampliamente aceptado que es fundamental desarrollar la habilidad de resolver problemas. El pensamiento computacional se basa en resolver problemas haciendo uso de conceptos fundamentales de la informática. Nada mejor para desarrollar la habilidad de resolver problemas usando conceptos informáticos que una asignatura de introducción a la programación. Este trabajo presenta nuestras reflexiones acerca de cómo iniciar a un estudiante en el campo de la programación de computadores. El trabajo no detalla los contenidos a impartir, sino que se centra en aspectos metodológicos, con la inclusión de experiencias y ejemplos concretos, a la vez que generales, extensibles a cualquier enseñanza de programación. En general, aunque se van desarrollado lenguajes cada vez más cercanos al lenguaje humano, la programación de ordenadores utilizando lenguajes formales no es una materia intuitiva y de fácil comprensión por parte de los estudiantes. A la persona que ya sabe programar le parece una tarea sencilla, pero al neófito no. Es más, dominar el arte de la programación es complejo. Por esta razón es indispensable utilizar todas las técnicas y herramientas posibles que faciliten dicha labor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AMS subject classification: 90C05, 90A14.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A distance-based inconsistency indicator, defined by the third author for the consistency-driven pairwise comparisons method, is extended to the incomplete case. The corresponding optimization problem is transformed into an equivalent linear programming problem. The results can be applied in the process of filling in the matrix as the decision maker gets automatic feedback. As soon as a serious error occurs among the matrix elements, even due to a misprint, a significant increase in the inconsistency index is reported. The high inconsistency may be alarmed not only at the end of the process of filling in the matrix but also during the completion process. Numerical examples are also provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we consider a primal-dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.