995 resultados para Beta-adrenoceptor agonists
Resumo:
Nitric oxide (NO) is an important mediator of inflammatory responses in the lung and a key regulator of bronchomotor tone. An airway NO synthase (NOS; EC 1.14.13.39) has been proposed as a source of endogenous NO in the lung but has not been clearly defined. Through molecular cloning, we conclusively demonstrate that NO synthesis in normal human airways is due to the continuous expression of the inducible NOS (iNOS) isoform in airway epithelial cells. Although iNOS mRNA expression is abundant in airway epithelial cells, expression is not detected in other pulmonary cell types, indicating that airway epithelial cells are unique in the continuous pattern of iNOS expression in the lung. In situ analysis reveals all airway epithelial cell types express iNOS. However, removal of epithelial cells from the in vivo airway environment leads to rapid loss of iNOS expression, which suggests expression is dependent upon conditions and/or factors present in the airway. Quantitation of NOS activity in epithelial cell lysates indicates nanomolar levels of NO synthesis occur in vivo. Remarkably, the high-level iNOS expression is constant in airway epithelium of normal individuals over time. However, expression is strikingly decreased by inhaled corticosteroids and beta-adrenergic agonists, medications commonly used in treatment of inflammatory airway diseases. Based upon these findings, we propose that respiratory epithelial cells are key inflammatory cells in the airway, functioning in host defense and potentially playing a role in airway inflammation.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
Induction of lipolysis in murine white adipocytes, and stimulation of adenylate cyclase in adipocyte plasma membranes, by a tumour-produced lipid mobilizing factor, was attenuated by low concentrations (10-7-10-5M) of the specific β3-adrenoceptor antagonist SR59230A. Lipid mobilizing factor (250 nM) produced comparable increases in intracellular cyclic AMP in CHOKI cells transfected with the human β3-adrenoceptor to that obtained with isoprenaline (1 nM). In both cases cyclic AMP production was attenuated by SR59230A confirming that the effect is mediated through a β3-adrenoceptor. A non-linear regression analysis of binding of lipid mobilizing factor to the β3-adrenoceptor showed a high affinity binding site with a Kd value 78±45 nM and a Bmax value (282±1 fmole mg protein-1) comparable with that of other β3-adrenoceptor agonists. These results suggest that lipid mobilizing factor induces lipolysis through binding to a β3-adrenoceptor. © 2002 The Cancer Research Campaign.
Resumo:
Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed
Resumo:
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic ob/ob mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157 ± 22 and 245 ± 1696, respectively, p < 0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10-6M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194 ± 33 and 136 ± 4%, respectively, p < 0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. © Georg Thieme Verlag KG Stuttgart.
Resumo:
L-carnitine is required for the transfer of long-chain fatty acids from the cytosol to the mitochondrial matrix for 13-oxidation of them and ractopamine, beta adrenergic agonists, have potential stimulating lipolysis and altering rates of protein degradation and synthesis. Present study was carried out to improve lipid body oxidation and protein-sparing action of fish through addition of L-carnitine and ractopamine to diet of rainbow trout, Oncorhynchus mykiss, Walbaum 1972. An eight-week feeding trial was carried out to evaluate the effects of supplementation of tree levels of L-carnitine tartrate (0, 1 and 2 g/kg) and two levels of ractopamine hydrochloride (0 and 10 ppm) on growth performance, fillet muscle fatty acid compositions and blood biochemical parameters in 288 juvenile rainbow trout (130 g) at 3X2 factorial experimental design. Ractopamine and 1 g/kg carnitine improved the specific growth rate, feed conversion ratio, protein efficiency ratio and weight gain at the end of experiment. The protein and lipid contents of fillet muscle were affected by the inclusion of 10 mg/kg ractopamine in the diet, increasing crude protein and reducing crude fat (P<0.05) of fish fillet muscle. The highest protein and lowest fat contents of fish fillet were observed in diet that contains 2 g/kg carnitine plus ractopamine. Ractopamine and carnitine increased levels of albumin, total protein and globulin in fish blood serum, but carnitine increased triacylglycerol and cholesterol. Fatty acids compositions of fish fillet were also affected by ractopamine and carnitine. All fatty acids except for eicosapentaenoic acid and docosahexaenoic acid, were increased by dietary supplementation of ractopamine. Total saturated fatty acids were not affected by carnitine. Supplementation (P>0.05). However, total n-3 poly unsaturated fatty acids were reduced by carnitine supplementation. A significant interaction was observed between ractopamine and carnitine supplementation regarding the saturated (P<0.01) and n-3 poly unsaturated fatty acid (P<0.001) of fish fillet. This study shows that supplementation of 1 g/kg carnitine and 10 ppm ractopamine could improve performance of juvenile rainbow trout and their combination in diet results in protein increment, fat reduction and change in profile of fatty acids in fillet muscle.
Resumo:
This study examined forearm vasodilatation during mental challenge and exercise in 72 obese children (OC; age = 10 +/- 0.1 years) homozygous with polymorphism in the allele 27 of the beta(2)-adrenoceptors: Gln27 (n = 61) and Glu27 (n = 11). Forearm blood flow was recorded during 3 min of each using the Stroop color-word test (MS) and handgrip isometric exercise. Baseline hemodynamic and vascular measurements were similar. During the MS, peak forearm vascular conductance was significantly greater in group Glu27 (Delta = 0.35 +/- 0.4 vs. 0.12 +/- 0.1 units, respectively, p = .042). Similar results were found during exercise (Delta = 0.64 +/- 0.1 vs. 0.13 +/- 0.1 units, respectively, p = .035). Glu27 OC increased muscle vasodilatory responsiveness upon the MS and exercise.
Resumo:
Background: Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the beta(2)-adrenoceptor gene. Methods: A total of 162 preselected individuals were genotyped for the Glu27Gln beta(2)-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 +/- 2 years; 64 +/- 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 +/- 3 years; 65 +/- 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results: The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 +/- 0.1 vs. 2.4 +/- 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 +/- 0.2 vs. 0.8 +/- 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 +/- 0.1 vs. Gln27Gln = 2.1 +/- 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 +/- 0.4 vs. 1.0 +/- 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 +/- 0.4 vs. 1.2 +/- 0.4; P = 0.66, respectively). Conclusion: These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the beta(2)-adrenoceptor gene.
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Resumo:
The alpha1-adrenergic agonist phenylephrine stimulated phospholipase D (PLD) activity in Rat 1 fibroblasts transfected to express either the wild-type hamster alpha1B-adrenoceptor or a constitutively active mutant (CAM) form of this receptor. The EC50 for agonist stimulation of PLD activity was substantially lower at the CAM receptor than at the wild-type receptor as previously noted for phenylephrine stimulation of phosphoinositidase C activity. Sustained treatment of cells expressing the CAM alpha1B-adrenoceptor with phentolamine resulted in a marked up-regulation in levels of this receptor with half-maximal effects produced within 24 h and with an EC50 of approx. 40 nM. Such an up-regulation could be produced with a range of other ligands generally viewed as alpha1-adrenoceptor antagonists but equivalent treatment of cells expressing the wild-type alpha1B-adrenoceptor was unable to mimic these effects. After sustained treatment of the CAM alpha1B-adrenoceptor expressing cells with phentolamine, basal PLD activity was increased and phenylephrine was now able to stimulate PLD activity to greater levels than in vehicle-treated CAM alpha1B-adrenoceptor-expressing cells. The EC50 for phenylephrine stimulation of PLD activity was not altered, however, by phentolamine pretreatment and the associated up-regulation of the receptor. After phentolamine-induced up-regulation of basal PLD activity, a range of alpha1-antagonists were shown to possess the characteristics of inverse agonists of the CAM alpha1B-adrenoceptor as they were able to substantially decrease the elevated basal PLD activity.
Resumo:
Purpose: the objective of the present investigation was to determine implantation and pregnancy rates in patients undergoing ICSI and treated with beta(2)-adrenergic agonists, considering the uterine-relaxing action of these agents.Methods: A total of 225 women undergoing ICSI at the Center for Human Reproduction, Sinha Junqueira Maternity Foundation, entered the study. Patient participation in each group was random, by drawing lots, using a randomization table previously elaborated for the study (2:2:1). The group I (90 women) received 10 mg of terbutaline daily for 15 days starting on the day of oocyte retrieval; group II (90 women) received 20 mg of ritodrine daily during the same period of time as group I; group III (45 patients) received no treatment and was used as control. The evaluation was interrupted in 3 patients of group I and in 30 patients of group II because of a high incidence of side effects.Results: Pregnancy, implantation, and miscarriage rates were not significantly different (p>0.05) between the three groups: 29.88%, 13.25%, and 26.9% for group I; 33.33%, 17.5%, and 10.0% for group II; 28.88%, 15.07%, and 15.38% for group III, respectively.Conclusions: the results of this study do not support the routine use of beta(2)-adrenergic agonists during the peri-implantation period in assisted reproductive technology cycles.