940 resultados para Bayesian hierarchical models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La creciente complejidad, heterogeneidad y dinamismo inherente a las redes de telecomunicaciones, los sistemas distribuidos y los servicios avanzados de información y comunicación emergentes, así como el incremento de su criticidad e importancia estratégica, requieren la adopción de tecnologías cada vez más sofisticadas para su gestión, su coordinación y su integración por parte de los operadores de red, los proveedores de servicio y las empresas, como usuarios finales de los mismos, con el fin de garantizar niveles adecuados de funcionalidad, rendimiento y fiabilidad. Las estrategias de gestión adoptadas tradicionalmente adolecen de seguir modelos excesivamente estáticos y centralizados, con un elevado componente de supervisión y difícilmente escalables. La acuciante necesidad por flexibilizar esta gestión y hacerla a la vez más escalable y robusta, ha provocado en los últimos años un considerable interés por desarrollar nuevos paradigmas basados en modelos jerárquicos y distribuidos, como evolución natural de los primeros modelos jerárquicos débilmente distribuidos que sucedieron al paradigma centralizado. Se crean así nuevos modelos como son los basados en Gestión por Delegación, en el paradigma de código móvil, en las tecnologías de objetos distribuidos y en los servicios web. Estas alternativas se han mostrado enormemente robustas, flexibles y escalables frente a las estrategias tradicionales de gestión, pero continúan sin resolver aún muchos problemas. Las líneas actuales de investigación parten del hecho de que muchos problemas de robustez, escalabilidad y flexibilidad continúan sin ser resueltos por el paradigma jerárquico-distribuido, y abogan por la migración hacia un paradigma cooperativo fuertemente distribuido. Estas líneas tienen su germen en la Inteligencia Artificial Distribuida (DAI) y, más concretamente, en el paradigma de agentes autónomos y en los Sistemas Multi-agente (MAS). Todas ellas se perfilan en torno a un conjunto de objetivos que pueden resumirse en alcanzar un mayor grado de autonomía en la funcionalidad de la gestión y una mayor capacidad de autoconfiguración que resuelva los problemas de escalabilidad y la necesidad de supervisión presentes en los sistemas actuales, evolucionar hacia técnicas de control fuertemente distribuido y cooperativo guiado por la meta y dotar de una mayor riqueza semántica a los modelos de información. Cada vez más investigadores están empezando a utilizar agentes para la gestión de redes y sistemas distribuidos. Sin embargo, los límites establecidos en sus trabajos entre agentes móviles (que siguen el paradigma de código móvil) y agentes autónomos (que realmente siguen el paradigma cooperativo) resultan difusos. Muchos de estos trabajos se centran en la utilización de agentes móviles, lo cual, al igual que ocurría con las técnicas de código móvil comentadas anteriormente, les permite dotar de un mayor componente dinámico al concepto tradicional de Gestión por Delegación. Con ello se consigue flexibilizar la gestión, distribuir la lógica de gestión cerca de los datos y distribuir el control. Sin embargo se permanece en el paradigma jerárquico distribuido. Si bien continúa sin definirse aún una arquitectura de gestión fiel al paradigma cooperativo fuertemente distribuido, estas líneas de investigación han puesto de manifiesto serios problemas de adecuación en los modelos de información, comunicación y organizativo de las arquitecturas de gestión existentes. En este contexto, la tesis presenta un modelo de arquitectura para gestión holónica de sistemas y servicios distribuidos mediante sociedades de agentes autónomos, cuyos objetivos fundamentales son el incremento del grado de automatización asociado a las tareas de gestión, el aumento de la escalabilidad de las soluciones de gestión, soporte para delegación tanto por dominios como por macro-tareas, y un alto grado de interoperabilidad en entornos abiertos. A partir de estos objetivos se ha desarrollado un modelo de información formal de tipo semántico, basado en lógica descriptiva que permite un mayor grado de automatización en la gestión en base a la utilización de agentes autónomos racionales, capaces de razonar, inferir e integrar de forma dinámica conocimiento y servicios conceptualizados mediante el modelo CIM y formalizados a nivel semántico mediante lógica descriptiva. El modelo de información incluye además un “mapping” a nivel de meta-modelo de CIM al lenguaje de especificación de ontologías OWL, que supone un significativo avance en el área de la representación y el intercambio basado en XML de modelos y meta-información. A nivel de interacción, el modelo aporta un lenguaje de especificación formal de conversaciones entre agentes basado en la teoría de actos ilocucionales y aporta una semántica operacional para dicho lenguaje que facilita la labor de verificación de propiedades formales asociadas al protocolo de interacción. Se ha desarrollado también un modelo de organización holónico y orientado a roles cuyas principales características están alineadas con las demandadas por los servicios distribuidos emergentes e incluyen la ausencia de control central, capacidades de reestructuración dinámica, capacidades de cooperación, y facilidades de adaptación a diferentes culturas organizativas. El modelo incluye un submodelo normativo adecuado al carácter autónomo de los holones de gestión y basado en las lógicas modales deontológica y de acción.---ABSTRACT---The growing complexity, heterogeneity and dynamism inherent in telecommunications networks, distributed systems and the emerging advanced information and communication services, as well as their increased criticality and strategic importance, calls for the adoption of increasingly more sophisticated technologies for their management, coordination and integration by network operators, service providers and end-user companies to assure adequate levels of functionality, performance and reliability. The management strategies adopted traditionally follow models that are too static and centralised, have a high supervision component and are difficult to scale. The pressing need to flexibilise management and, at the same time, make it more scalable and robust recently led to a lot of interest in developing new paradigms based on hierarchical and distributed models, as a natural evolution from the first weakly distributed hierarchical models that succeeded the centralised paradigm. Thus new models based on management by delegation, the mobile code paradigm, distributed objects and web services came into being. These alternatives have turned out to be enormously robust, flexible and scalable as compared with the traditional management strategies. However, many problems still remain to be solved. Current research lines assume that the distributed hierarchical paradigm has as yet failed to solve many of the problems related to robustness, scalability and flexibility and advocate migration towards a strongly distributed cooperative paradigm. These lines of research were spawned by Distributed Artificial Intelligence (DAI) and, specifically, the autonomous agent paradigm and Multi-Agent Systems (MAS). They all revolve around a series of objectives, which can be summarised as achieving greater management functionality autonomy and a greater self-configuration capability, which solves the problems of scalability and the need for supervision that plague current systems, evolving towards strongly distributed and goal-driven cooperative control techniques and semantically enhancing information models. More and more researchers are starting to use agents for network and distributed systems management. However, the boundaries established in their work between mobile agents (that follow the mobile code paradigm) and autonomous agents (that really follow the cooperative paradigm) are fuzzy. Many of these approximations focus on the use of mobile agents, which, as was the case with the above-mentioned mobile code techniques, means that they can inject more dynamism into the traditional concept of management by delegation. Accordingly, they are able to flexibilise management, distribute management logic about data and distribute control. However, they remain within the distributed hierarchical paradigm. While a management architecture faithful to the strongly distributed cooperative paradigm has yet to be defined, these lines of research have revealed that the information, communication and organisation models of existing management architectures are far from adequate. In this context, this dissertation presents an architectural model for the holonic management of distributed systems and services through autonomous agent societies. The main objectives of this model are to raise the level of management task automation, increase the scalability of management solutions, provide support for delegation by both domains and macro-tasks and achieve a high level of interoperability in open environments. Bearing in mind these objectives, a descriptive logic-based formal semantic information model has been developed, which increases management automation by using rational autonomous agents capable of reasoning, inferring and dynamically integrating knowledge and services conceptualised by means of the CIM model and formalised at the semantic level by means of descriptive logic. The information model also includes a mapping, at the CIM metamodel level, to the OWL ontology specification language, which amounts to a significant advance in the field of XML-based model and metainformation representation and exchange. At the interaction level, the model introduces a formal specification language (ACSL) of conversations between agents based on speech act theory and contributes an operational semantics for this language that eases the task of verifying formal properties associated with the interaction protocol. A role-oriented holonic organisational model has also been developed, whose main features meet the requirements demanded by emerging distributed services, including no centralised control, dynamic restructuring capabilities, cooperative skills and facilities for adaptation to different organisational cultures. The model includes a normative submodel adapted to management holon autonomy and based on the deontic and action modal logics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo dessa pesquisa foi avaliar aspectos genéticos que relacionados à produção in vitro de embriões na raça Guzerá. O primeiro estudo focou na estimação de (co) variâncias genéticas e fenotípicas em características relacionadas a produção de embriões e na detecção de possível associação com a idade ao primeiro parto (AFC). Foi detectada baixa e média herdabilidade para características relacionadas à produção de oócitos e embriões. Houve fraca associação genética entre características ligadas a reprodução artificial e a idade ao primeiro parto. O segundo estudo avaliou tendências genéticas e de endogamia em uma população Guzerá no Brasil. Doadoras e embriões produzidos in vitro foram considerados como duas subpopulações de forma a realizar comparações acerca das diferenças de variação anual genética e do coeficiente de endogamia. A tendência anual do coeficiente de endogamia (F) foi superior para a população geral, sendo detectado efeito quadrático. No entanto, a média de F para a sub- população de embriões foi maior do que na população geral e das doadoras. Foi observado ganho genético anual superior para a idade ao primeiro parto e para a produção de leite (305 dias) entre embriões produzidos in vitro do que entre doadoras ou entre a população geral. O terceiro estudo examinou os efeitos do coeficiente de endogamia da doadora, do reprodutor (usado na fertilização in vitro) e dos embriões sobre resultados de produção in vitro de embriões na raça Guzerá. Foi detectado efeito da endogamia da doadora e dos embriões sobre as características estudadas. O quarto (e último) estudo foi elaborado para comparar a adequação de modelos mistos lineares e generalizados sob método de Máxima Verossimilhança Restrita (REML) e sua adequação a variáveis discretas. Quatro modelos hierárquicos assumindo diferentes distribuições para dados de contagem encontrados no banco. Inferência foi realizada com base em diagnósticos de resíduo e comparação de razões entre componentes de variância para os modelos em cada variável. Modelos Poisson superaram tanto o modelo linear (com e sem transformação da variável) quanto binomial negativo à qualidade do ajuste e capacidade preditiva, apesar de claras diferenças observadas na distribuição das variáveis. Entre os modelos testados, a pior qualidade de ajuste foi obtida para o modelo linear mediante transformação logarítmica (Log10 X +1) da variável resposta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of a fully parametric Bayesian method for analysing single patient trials based on the notion of treatment 'preference' is described. This Bayesian hierarchical modelling approach allows for full parameter uncertainty, use of prior information and the modelling of individual and patient sub-group structures. It provides updated probabilistic results for individual patients, and groups of patients with the same medical condition, as they are sequentially enrolled into individualized trials using the same medication alternatives. Two clinically interpretable criteria for determining a patient's response are detailed and illustrated using data from a previously published paper under two different prior information scenarios. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this report is to describe the use of WinBUGS for two datasets that arise from typical population pharmacokinetic studies. The first dataset relates to gentamicin concentration-time data that arose as part of routine clinical care of 55 neonates. The second dataset incorporated data from 96 patients receiving enoxaparin. Both datasets were originally analyzed by using NONMEM. In the first instance, although NONMEM provided reasonable estimates of the fixed effects parameters it was unable to provide satisfactory estimates of the between-subject variance. In the second instance, the use of NONMEM resulted in the development of a successful model, albeit with limited available information on the between-subject variability of the pharmacokinetic parameters. WinBUGS was used to develop a model for both of these datasets. Model comparison for the enoxaparin dataset was performed by using the posterior distribution of the log-likelihood and a posterior predictive check. The use of WinBUGS supported the same structural models tried in NONMEM. For the gentamicin dataset a one-compartment model with intravenous infusion was developed, and the population parameters including the full between-subject variance-covariance matrix were available. Analysis of the enoxaparin dataset supported a two compartment model as superior to the one-compartment model, based on the posterior predictive check. Again, the full between-subject variance-covariance matrix parameters were available. Fully Bayesian approaches using MCMC methods, via WinBUGS, can offer added value for analysis of population pharmacokinetic data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While the carnivores are considered regulators and structuring of natural communities are also extremely threatened by human activities. Endangered little-spotted-cat (Leopardus tigrinus) is one of the lesser known species from the Neotropical cats. In this work we investigate the occupancy and the activity pattern of L. tigrinus in Caatinga of Rio Grande do Norte testing: 1) how environmental and anthropogenic factors influence their occupation and 2) how biotic and abiotic factors influence their activity pattern. For this we raised occurrence data of species in 10 priority areas for conservation. We built hierarchical models of occupancy based on maximum likelihood to represent biological hypotheses which were ranked using the Akaike Information Criterion (AIC). According to the results the feline occupancy is more likely away from rural settlements and in areas with a higher proportion of woody vegetation. The opportunistic killing of L. tigrinus and in retaliation for poultry predation close to residential areas can explain this result; as well as more complex vegetation structure can better serve as refuge and ensure more food. Analyzing the records of the species through circular statistics we conclude that the activity pattern is mostly nocturnal, although considerable crepuscular and a small diurnal activity. L. tigrinus activity was directly affected by the availability of small terrestrial mammals, which are essentially nocturnal. In addition, the temperatures recorded in the environment directly and indirectly affect the activity of the little-spotted-cat, as also influence the activity of their potential prey. Generally, the cats were more active when possible prey were active, and this happened at night when lower temperatures are recorded. Moreover, the different lunar phases did not affect the activity pattern. The results improve the understanding of an endangered feline inhabiting the Caatinga biome, and thus can help develop conservation and management strategies, as well as in planning future research in this semi-arid ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper synthesizes and discusses the spatial and temporal patterns of archaeological sites in Ireland, spanning the Neolithic period and the Bronze Age transition (4300–1900 cal BC), in order to explore the timing and implications of the main changes that occurred in the archaeological record of that period. Large amounts of new data are sourced from unpublished developer-led excavations and combined with national archives, published excavations and online databases. Bayesian radiocarbon models and context- and sample-sensitive summed radiocarbon probabilities are used to examine the dataset. The study captures the scale and timing of the initial expansion of Early Neolithic settlement and the ensuing attenuation of all such activity—an apparent boom-and-bust cycle. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. Contextualisation and spatial analysis of radiocarbon data reveals finer-scale patterning than is usually possible with summed-probability approaches: the boom-and-bust models of prehistoric populations may, in fact, be a misinterpretation of more subtle demographic changes occurring at the same time as cultural change and attendant differences in the archaeological record.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La connectomique est l’étude des cartes de connectivité du cerveau (animal ou humain), qu’on nomme connectomes. À l’aide des outils développés par la science des réseaux complexes, la connectomique tente de décrire la complexité fonctionnelle et structurelle du cerveau. L’organisation des connexions du connectome, particulièrement la hiérarchie sous-jacente, joue un rôle majeur. Jusqu’à présent, les modèles hiérarchiques utilisés en connectomique sont pauvres en propriétés émergentes et présentent des structures régulières. Or, la complexité et la richesse hiérarchique du connectome et de réseaux réels ne sont pas saisies par ces modèles. Nous introduisons un nouveau modèle de croissance de réseaux hiérarchiques basé sur l’attachement préférentiel (HPA - Hierarchical preferential attachment). La calibration du modèle sur les propriétés structurelles de réseaux hiérarchiques réels permet de reproduire plusieurs propriétés émergentes telles que la navigabilité, la fractalité et l’agrégation. Le modèle permet entre autres de contrôler la structure hiérarchique et apporte un support supplémentaire quant à l’influence de la structure sur les propriétés émergentes. Puisque le cerveau est continuellement en activité, nous nous intéressons également aux propriétés dynamiques sur des structures hiérarchiques produites par HPA. L’existence d’états dynamiques d’activité soutenue, analogues à l’état minimal de l’activité cérébrale, est étudiée en imposant une dynamique neuronale binaire. Bien que l’organisation hiérarchique favorise la présence d’un état d’activité minimal, l’activité persistante émerge du contrôle de la propagation par la structure du réseau.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed timevarying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible realtime term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper was to obtain evidence of the validity of the LSB-50 (de Rivera & Abuín, 2012), a screening measure of psychopathology, in Argentinean adolescents. The sample consisted of 1002 individuals (49.7% male; 50.3% female) between 12 and 18 years-old (M = 14.98; SD = 1.99). A cross-validation study and factorial invariance studies were performed in samples divided by sex and age to test if a seven-factor structure that corresponds to seven clinical scales (Hypersensitivity, Obsessive-Compulsive, Anxiety, Hostility, Somatization, Depression, and Sleep disturbance) was adequate for the LSB-50. The seven-factor structure proved to be suitable for all the subsamples. Next, the fit of the seven-factor structure was studied simultaneously? in the aforementioned subsamples through hierarchical models that imposed different constrains of equivalency?. Results indicated the invariance of the seven clinical dimensions of the LSB-50. Ordinal alphas showed good internal consistency for all the scales. Finally, the correlations with a diagnostic measure of psychopathology (PAI-A) indicated moderate convergence. It is concluded that the analyses performed provide robust evidence of construct validity for the LSB-50

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on somatic cell counts (SCC) in early lactation. Data from 52 commercial dairy farms throughout England and Wales were collected over a 2-yr period. For the purpose of analysis, cows were separated into those housed for the dry period (6,419 cow-dry periods) and those at pasture (7,425 cow-dry periods). Bayesian multilevel models were specified with 2 response variables: ln SCC (continuous) and SCC >199,000 cells/mL (binary), both within 30 d of calving. Cow factors associated with an increased SCC after calving were parity, an SCC >199,000 cells/mL in the 60 d before drying off, increasing milk yield 0 to 30 d before drying off, and reduced DIM after calving at the time of SCC estimation. Herd management factors associated with an increased SCC after calving included procedures at drying off, aspects of bedding management, stocking density, and method of pasture grazing. Posterior predictions were used for model assessment, and these indicated that model fit was generally good. The research demonstrated that specific dry-period management strategies have an important influence on SCC in early lactation.