145 resultados para Bauhinia rufa
Resumo:
The international standardisation of national meteorological networks in the late nineteenth century excluded biotic and abiotic observations from the objects to be henceforth published in the yearbooks. Skilled amateurs being in charge of three meteorological stations in Canton Schaffhausen (Switzerland) and their successors managed to continuously publish phenological observations gathered in the station environment alongside with meteorological data in the official gazette of this Canton from 1876 to 1950, i.e. up to the onset of phenological network observations in Switzerland. At least ten observations are available for 51 plant and animal phenological phases. Long series were assembled (N → = 30) for 14 plant phenological observations, among them for the first flowering of snowdrop (Galanthus nivalis), of hazel (Corylus avellana), of horse chestnut (Aesculus hippocastanum), of winter rye (Secale cereale) and of grape vine (Vitis vinifera) as well as the beginning of hay, winter rye and grape harvesting. Only the bare data were published without any metadata. The quality of 10 long series (N →=60) was checked by investigating the biographical and biological background of key observers and submitting their evidence to graphical (meteorological plausibility check of outliers) and statistical verification. The long term observers, mostly schoolteachers and high school professors, had a good knowledge of botany and the quality of their observations – disregarding obvious printing errors – is surprisingly good. A number of long series (seven) was completed with applicable data from the Swiss Phenological Network up to 2011. Besides anthropogenic shifts (beginning of hay and grape harvest) there is a contrast between a global warming-related earlier flowering of snowdrop and hazel and a later occurrence of grape vine flowering.
Resumo:
We present a high-resolution reconstruction of tropical palaeoenvironmental changes for the last deglacial transition (18 to 9 cal. kyr BP) based on integrated oceanic and terrestrial proxies from a Congo fan core. Pollen, grass cuticle, Pediastrum and dinoflagellate cyst fluxes, sedimentation rates and planktonic foraminiferal d18O ratios, uK37 sea-surface temperature and alkane/alkenone ratio data highlight a series of abrupt changes in Congo River palaeodischarge. A major discharge pulse is registered at around 13.0 cal. kyr BP which we attribute to latitudinal migration of the Intertropical Convergence Zone (ITCZ) during deglaciation. The data indicate abrupt and short-lived changes in the equatorial precipitation regime within a system of monsoonal dynamics forced by precessional cycles. The phases of enhanced Congo discharge stimulated river-induced upwelling and enhanced productivity in the adjacent ocean.
Resumo:
ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.
Resumo:
The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.
Resumo:
The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Resumo:
Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.