613 resultados para Basolateral Amygdala
Resumo:
The amygdala was more responsive to fearful (larger) eye whites than to happy (smaller) eye whites presented in a masking paradigm that mitigated subjects' awareness of their presence and aberrant nature. These data demonstrate that the amygdala is responsive to elements of.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Resumo:
This commentary raises general questions about the parsimony and generalizability of the SIMS model, before interrogating the specific roles that the amygdala and eye contact play in it. Additionally, this situates the SIMS model alongside another model of facial expression processing, with a view to incorporating individual differences in emotion perception.
Resumo:
Despite growing evidence on the neural bases of emotion regulation, little is known about the mechanisms underlying individual differences in cognitive regulation of negative emotion, and few studies have used objective measures to quantify regulatory success. Using a trait-like psychophysiological measure of emotion regulation, corrugator electromyography, we obtained an objective index of the ability to cognitively reappraise negative emotion in 56 healthy men (session 1), who returned 1.3 years later to perform the same regulation task using fMRI (session 2). Results indicated that the corrugator measure of regulatory skill predicted amygdala-prefrontal functional connectivity. Individuals with greater ability to down-regulate negative emotion as indexed by corrugator at session 1 showed not only greater amygdala attenuation but also greater inverse connectivity between the amygdala and several sectors of the prefrontal cortex while down-regulating negative emotion at session 2. Our results demonstrate that individual differences in emotion regulation are stable over time and underscore the important role of amygdala-prefrontal coupling for successful regulation of negative emotion.
Resumo:
An individual’s affective style is influenced by many things, including the manner in which an individual responds to an emotional challenge. Emotional response is composed of a number of factors, two of which are the initial reactivity to an emotional stimulus and the subsequent recovery once the stimulus terminates or ceases to be relevant. However, most neuroimaging studies examining emotional processing in humans focus on the magnitude of initial reactivity to a stimulus rather than the prolonged response. In this study, we use functional magnetic resonance imaging to study the time course of amygdala activity in healthy adults in response to presentation of negative images. We split the amygdala time course into an initial reactivity period and a recovery period beginning after the offset of the stimulus. We find that initial reactivity in the amygdala does not predict trait measures of affective style. Conversely, amygdala recovery shows predictive power such that slower amygdala recovery from negative images predicts greater trait neuroticism, in addition to lower levels of likability of a set of social stimuli (neutral faces). These data underscore the importance of taking into account temporal dynamics when studying affective processing using neuroimaging.
Resumo:
As people get older, they tend to remember more positive than negative information. This age-by-valence interaction has been called “positivity effect.” The current study addressed the hypotheses that baseline functional connectivity at rest is predictive of older adults' brain activity when learning emotional information and their positivity effect in memory. Using fMRI, we examined the relationship among resting-state functional connectivity, subsequent brain activity when learning emotional faces, and individual differences in the positivity effect (the relative tendency to remember faces expressing positive vs. negative emotions). Consistent with our hypothesis, older adults with a stronger positivity effect had increased functional coupling between amygdala and medial PFC (MPFC) during rest. In contrast, younger adults did not show the association between resting connectivity and memory positivity. A similar age-by-memory positivity interaction was also found when learning emotional faces. That is, memory positivity in older adults was associated with (a) enhanced MPFC activity when learning emotional faces and (b) increased negative functional coupling between amygdala and MPFC when learning negative faces. In contrast, memory positivity in younger adults was related to neither enhanced MPFC activity to emotional faces, nor MPFC–amygdala connectivity to negative faces. Furthermore, stronger MPFC–amygdala connectivity during rest was predictive of subsequent greater MPFC activity when learning emotional faces. Thus, emotion–memory interaction in older adults depends not only on the task-related brain activity but also on the baseline functional connectivity.
Resumo:
Background The quality of the early environment is hypothesized to be an influence on morphological development in key neural areas related to affective responding, but direct evidence to support this possibility is limited. In a 22-year longitudinal study, we examined hippocampal and amygdala volumes in adulthood in relation to early infant attachment status, an important indicator of the quality of the early caregiving environment. Methods Participants (N = 59) were derived from a prospective longitudinal study of the impact of maternal postnatal depression on child development. Infant attachment status (24 Secure; 35 Insecure) was observed at 18 months of age, and MRI assessments were completed at 22 years. Results In line with hypotheses, insecure versus secure infant attachment status was associated with larger amygdala volumes in young adults, an effect that was not accounted for by maternal depression history. We did not find early infant attachment status to predict hippocampal volumes. Conclusions Common variations in the quality of early environment are associated with gross alterations in amygdala morphology in the adult brain. Further research is required to establish the neural changes that underpin the volumetric differences reported here, and any functional implications.
Resumo:
Background: Coordination of activity between the amygdala and ventromedial prefrontal cortex (vmPFC) is important for fear-extinction learning. Aberrant recruitment of this circuitry is associated with anxiety disorders. Here, we sought to determine if individual differences in future threat uncertainty sensitivity, a potential risk factor for anxiety disorders, underly compromised recruitment of fear extinction circuitry. Twenty-two healthy subjects completed a cued fear conditioning task with acquisition and extinction phases. During the task, pupil dilation, skin conductance response, and functional magnetic resonance imaging were acquired. We assessed the temporality of fear extinction learning by splitting the extinction phase into early and late extinction. Threat uncertainty sensitivity was measured using self-reported intolerance of uncertainty (IU). Results: During early extinction learning, we found low IU scores to be associated with larger skin conductance responses and right amygdala activity to learned threat vs. safety cues, whereas high IU scores were associated with no skin conductance discrimination and greater activity within the right amygdala to previously learned safety cues. In late extinction learning, low IU scores were associated with successful inhibition of previously learned threat, reflected in comparable skin conductance response and right amgydala activity to learned threat vs. safety cues, whilst high IU scores were associated with continued fear expression to learned threat, indexed by larger skin conductance and amygdala activity to threat vs. safety cues. In addition, high IU scores were associated with greater vmPFC activity to threat vs. safety cues in late extinction. Similar patterns of IU and extinction learning were found for pupil dilation. The results were specific for IU and did not generalize to self-reported trait anxiety. Conclusions: Overall, the neural and psychophysiological patterns observed here suggest high IU individuals to disproportionately generalize threat during times of uncertainty, which subsequently compromises fear extinction learning. More broadly, these findings highlight the potential of intolerance of uncertainty-based mechanisms to help understand pathological fear in anxiety disorders and inform potential treatment targets.
Resumo:
Functional neuroimaging investigations of pain have discovered a reliable pattern of activation within limbic regions of a putative "pain matrix" that has been theorized to reflect the affective dimension of pain. To test this theory, we evaluated the experience of pain in a rare neurological patient with extensive bilateral lesions encompassing core limbic structures of the pain matrix, including the insula, anterior cingulate, and amygdala. Despite widespread damage to these regions, the patient's expression and experience of pain was intact, and at times excessive in nature. This finding was consistent across multiple pain measures including self-report, facial expression, vocalization, withdrawal reaction, and autonomic response. These results challenge the notion of a "pain matrix" and provide direct evidence that the insula, anterior cingulate, and amygdala are not necessary for feeling the suffering inherent to pain. The patient's heightened degree of pain affect further suggests that these regions may be more important for the regulation of pain rather than providing the decisive substrate for pain's conscious experience.
Resumo:
The ability to regulate emotion is crucial to promote well-being. Evidence suggests that the medial prefrontal cortex (mPFC) and adjacent anterior cingulate (ACC) modulate amygdala activity during emotion regulation. Yet less is known about whether the amygdala-mPFC circuit is linked with regulation of the autonomic nervous system and whether the relationship differs across the adult lifespan. The current study tested the hypothesis that heart rate variability (HRV) reflects the strength of mPFC-amygdala interaction across younger and older adults. We recorded participants’ heart rates at baseline and examined whether baseline HRV was associated with amygdala-mPFC functional connectivity during rest. We found that higher HRV was associated with stronger functional connectivity between the amygdala and the mPFC during rest across younger and older adults. In addition to this age-invariant pattern, there was an age-related change, such that greater HRV was linked with stronger functional connectivity between amygdala and ventrolateral PFC (vlPFC) in younger than in older adults. These results are in line with past evidence that vlPFC is involved in emotion regulation especially in younger adults. Taken together, our results support the neurovisceral integration model and suggest that higher heart rate variability is associated with neural mechanisms that support successful emotional regulation across the adult lifespan.
Resumo:
The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.