984 resultados para Basis functions
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
This work presents a theoretical analysis and numerical and experimental results of the scattering characteristics of frequency selective surfaces, using elements of type patch perfectly conductor. The structures are composed of two frequency selective surfaces on isotropic dielectric substrates cascaded, separated by a layer of air. The analysis is performed using the method of equivalent transmission line in combination with the Galerkin method, to determine the transmission and reflection characteristics of the structures analyzed. Specifically, the analysis uses the impedance method, which models the structure by an equivalent circuit, and applies the theory of transmission lines to determine the dyadic Green's function for the cascade structure. This function relates the incident field and surface current densities. These fields are determined algebraically by means of potential incidents and the imposition of the continuity of the fields in the dielectric interfaces. The Galerkin method is applied to the numerical determination of the unknown weight coefficients and hence the unknown densities of surface currents, which are expanded in terms of known basis functions multiplied by these weight coefficients. From the determination of these functions, it becomes possible to obtain numerical scattered fields at the top and bottom of the structures and characteristics of transmission and reflection of these structures. At work, we present numerical and experimental results for the characteristics of transmission and reflection. Comparisons were made with other results presented in literature, and it was observed a good agreement in the cases presented suggestions continuity of the work are presented
Resumo:
An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network
Resumo:
This dissertation presents a new proposal for the Direction of Arrival (DOA) detection problem for more than one signal inciding simultaneously on an antennas array with linear or planar geometry by using intelligent algorithms. The DOA estimator is developed by using techniques of Conventional Beam-forming (CBF), Blind Source Separation (BSS), and the neural estimator MRBF (Modular Structure of Radial Basis Functions). The developed MRBF estimator has its capacity extended due to the interaction with the BSS technique. The BSS makes an estimation of the steering vectors of the multiple plane waves that reach the array in the same frequency, that means, obtains to separate mixed signals without information a priori. The technique developed in this work makes possible to identify the multiple sources directions and to identify and to exclude interference sources
Resumo:
This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system
Resumo:
Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Expressions for the Baker-Akhiezer function and their logarithmic space and time derivatives are derived in terms of the matrix elements of U - V matrices and 'squared basis functions'. These expressions generalize the well known formulas for the KdV equation case and establish links between different forms of the Whitham averaging procedure.
Resumo:
A narrow S-wave resonance has been found in the positron-helium system at about 30 eV, using the close-coupling approach, in excitation and rearrangement cross sections to He(1s2s), He(1s2p), Ps(1s) and Ps(2s) states by employing different combinations of the following basis functions: He(1s1s), He(1s2s), He(1s2p), Ps(1s) and Ps(2s), where Ps stands for the positronium atom.
Resumo:
We study positron-helium scattering using close coupling approximation (CCA) employing different combinations of the following basis functions: He(1s1s), He(1s2s), He(1s2p), Ps(1s). and Ps(2s), where Ps stands for the positronium atom. We observe a prominent S wave resonance of width 2 eV at about 30 eV, in excitation and rearrangement cross sections to He(1s2s), He(1s2p), Ps(1s) and Ps(2s) states. We also report results of differential cross sections for the excitation of helium and positronium formation.
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
We propose new circuits for the implementation of Radial Basis Functions such as Gaussian and Gaussian-like functions. These RBFs are obtained by the subtraction of two differential pair output currents in a folded cascode configuration. We also propose a multidimensional version based on the unidimensional circuits. SPICE simulation results indicate good functionality. These circuits are intended to be applied in the implementation of radial basis function networks. One possible application of these networks is transducer signal conditioning in aircraft and spacecraft vehicles onboard telemetry systems. Copyright 2008 ACM.
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
Resumo:
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.