263 resultados para BUTANOL
Resumo:
The Lewis acidity of yttrium and dysprosium exchanged zeolite Y and ZSM-5 has been determined by titration method using Hammett indicators. The acidity of the Y form increases with increase in concentration of the rare earth cation in the Y zeolite. It is independent of the amount of the rare earth ion for ZSM-5. The data have been correlated with the activity of these zeolites for the esterification of butanol using acetic acid.
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
In the current study, a novel non-acetone forming butanol and ethanol producer Was isolated and identified. Based on the 16s rDNA sequence BLAST and phylogenetic analyses, it was found to have high similarity with the reported hydrogen producing strains of Clostridium sporogenes. Biochemical studies revealed that it is lipase and protease positive. The lipolytic and proteolytic properties are the very important characteristics of Clostridium sporogenes. Sugar utilization profile studies were positive for glucose, saccharose, cellobiose and weakly positive result to xylose. This study demonstrated C. sporogenes BE01, an isolate from NIIST is having potential to compete with existing, well known butanol producers with the advantage of no acetone in the final solvent mixture. Rice straw hydrolysate is a potent source of substrate for butanol production by C. sporogenes BE01. Additional supplementation of vitamins and minerals were avoided by using rice straw hydrolysate as substrate. Its less growth, due to the inhibitors present in the hydrolysate and also inhibition by products resulted in less efficient conversion of sugars to butanol. Calcium carbonate played an important role in improving the butanol production, by providing the buffering action during fermentation and stimulating the electron transport mediators and redox reactions favoring butanol production. Its capability to produce acetic acid, butyric acid and hydrogen in significant quantities during butanol production adds value to the conversion process of lignocellulosic biomass to butanol. High cell density fermentation by immobilizing the cells on to ceramic particles improved the solvents and VFA production. Reduced sugar utilization from the concentrated hydrolysate could be due to accumulation of inhibitors in the hydrolysate during concentration. Two-stage fermentation was very efficient with immobilized cells and high conversions of sugars to solvents and VFAs were achieved. The information obtained from the study would be useful to develop a feasible technology for conversion of lignocellulosic biomass to biobutanol.
Resumo:
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone–hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.
Resumo:
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability.
Resumo:
N-Arylsulfonamides of (R)- and (S)-2-amino-1-butanol, on condensation with aromatic aldehydes produced diastereomerically pure 2-aryl-3-arenesulfonyl 4-ethyl-1,3-oxazolidines. The absolute configurations of one enantiomeric pair have been determined from two fully refined X-ray structures, supplemented by nmr data.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Resumo:
To maximise the potential benefits to ruminants from sainfoin, plant breeding should focus on developing varieties with predictable condensed tannin (CT) profiles. Little is known about whether and to what extent accession and environment influence sainfoin CT structures. We sought to investigate the likely extent of accession and environment effects on CT characteristics of sainfoin. Four single-flowering (Communis) accessions and two multiple-flowering (Bifera) accessions, grown at three sites and collected at two harvest times were used. Sainfoin CTs were characterised by thiolytic degradation and by high-performance liquid chromatography-gel permeation chromatography (HPLC-GPC). Also, CT concentration measured earlier by the HCl-butanol method was compared with that from thiolysis
Resumo:
Abstract BACKGROUND: To maximise the potential benefits to ruminants from sainfoin, plant breeding should focus on developing varieties with predictable condensed tannin (CT) profiles. Little is known about whether and to what extent accession and environment influence sainfoin CT structures. We sought to investigate the likely extent of accession and environment effects on CT characteristics of sainfoin. Four single-flowering (Communis) accessions and two multiple-flowering (Bifera) accessions, grown at three sites and collected at two harvest times were used. Sainfoin CTs were characterised by thiolytic degradation and by high-performance liquid chromatography-gel permeation chromatography (HPLC-GPC). Also, CT concentration measured earlier by the HCl-butanol method was compared with that from thiolysis. RESULTS: Thiolysis revealed that accession and harvest influenced most CT structural attributes. Bifera CTs eluted as single peaks (Mp < 6220 Da) in HPLC-GPC across the two harvests and two sites, whereas Communis generated two to three CT peaks, which included a peak (Mp ≤ 9066 Da) in the second harvest. A discrepancy was observed in CT concentrations measured by the two methods. CONCLUSION: CTs from Bifera accessions had more stable and predictable characteristics across harvests and sites and this could be of interest when breeding sainfoin. © 2013 Society of Chemical Industry.
Resumo:
Phase studies have been performed for quaternary systems composed of egg lecithin, cosurfactant, water and oil. The lecithin used was the commercially available egg lecithin Ovothin 200 (which comprises ≥ 92% phosphatidylcholine). The cosurfactants employed were propanol and butanol, and these were used at lecithin/cosurfactant mixing ratios (Km) of 1:1 and 1.94:1 (weight basis). Six polar oils were investigated, including the alkanoic acids, octanoic and oleic, their corresponding ethyl esters and the medium and long chain triglycerides, Miglyol 812 and soybean oil. All oils, irrespective of the alcohol and the Km used, gave rise to systems that produced a stable isotropic region along the surfactant/oil axis (designated as a reverse microemulsion system). In addition, the systems incorporating propanol at both Km and butanol at a Km of 1.94: 1, generally gave rise to a liquid crystalline region and, in some cases, a second isotropic non-birefingent area (designated as a normal microemulsion system). The phase behaviour observed was largely dependent upon the alcohol and Km used and the size and the polarity of the oil present.
Resumo:
Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 mu gL-1), butiraldehyde (0.08-0.5 mu gL-1), ethanol (39-47% v/v), and copper (371-6068 mu gL-1) showed marked similarities, but the concentration levels of n-butanol (1.6-7.3 mu gL-1), sec-butanol (LD 89 mu gL-1), formaldehyde (0.1-0.74 mu gL-1), valeraldehyde (0.04-0.31 mu gL-1), iron (8.6-139.1 mu gL-1), and magnesium (LD 1149 mu gL-1) exhibited differences from samples.
Resumo:
Urban particulate matter (UPM) contributes to lung cancer incidence. Here, we have studied the mutagenic activity and DNA adduct-forming ability of fractionated UPM extractable organic matter (EOM). UPM was collected with a high-volume sampler in June 2004 at two sites, one at street level adjacent to a roadway and the other inside a park within the urban area of the city of Sao Paulo, Brazil. UPM was extracted using dichloromethane, and the resulting EOM was separated by HPLC to obtain PAH, nitro-PAH, and oxy-PAH fractions which were tested for mutagenicity with the Salmonella strains TA98 and YG1041 with and without S9 metabolic activation. The PAH fraction from both sites showed negligible mutagenic activity in both strains. The highest mutagenic activity was found for the nitro-PAH fraction using YG1041 without metabolic activation; however, results were comparable for both sites. The nitro-PAH and oxy-PAH fractions were incubated with calf thymus DNA under reductive conditions appropriate for the activation of nitro aromatic compounds, then DNA adduct patterns and levels were determined with thin-layer chromatography (TLC) (32)p-postlabeling method using two enrichment procedures-nuclease PI digestion and butanol extraction. Reductively activated fractions from both sites produced diagonal radioactive zones (DRZ) of putative aromatic DNA adducts on thin layer plates with both enrichment procedures. No such DRZ were observed in control experiments using fractions from unexposed filters or from incubations without activating system. Total adduct levels produced by the nitro-PAH fractions were similar for both sites ranging from 30 to 45 adducts per 10(8) normal nucleotides. In contrast, the DNA binding of reductively activated oxy-PAH fractions was three times higher and the adduct pattern consisted of multiple discrete spots along the diagonal line on the thin layer plates. However, DNA adduct levels were not significantly different between the sampling sites. Both samples presented the same levels of mutagenic activity. The response in the Salmonella assay was typical of nitroaromatics. Although, more mutagenic activity was related to the nitro-PAH fraction in the Salmonella assay, the oxy-PAH fractions showed the highest DNA adduct levels. More studies are needed to elucidate the nature of the genotoxicants occurring in Sao Paulo atmospheric samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Resumo:
A Mg e Mn-Ftalocianina (Mg e Mn-Pc) foram solubilizados à 25°C em dimetilsulfóxido (DMSO); N, N-dimetilacetamida (DMA); N,N-dimetilformamida (DMF); N-metil-formamida, formamida, piridina, o-diclorobenzeno, monoclorobenzeno, tolueno, metanol, etanol, propanol-1, propanol-2, butanol-1 e octanol-1. Alguns valores representativos obtidos para o logarítimo da absortividade molar (E) da Mn-Pc, são os seguintes: o-diclorobenzeno (E = 4,94); DMSO (E = 4,39); octanol-1 (E = 3,90). Valores correspondentes para Mg-Pc são: o-diclarobenzeno (E = 4,93); DMSO (E = 5,22) e Octanol-1 ( E = 5,06). Em função de interação com solventes, pode-se classificar a Mg-Pc como um indicador básico e a Mn-Pc como indicador ácido. Os pigmentos Mg e Mn-Pc foram também solubillzados em soluções aquosas contendo vários surfatantes à 25°C. A Mg-Pc apresentou solubilidade significativa em água contendo brometo de cetiltrimetilamônio (CTAB), Brij-35, cloreto de cetilpiridinio (CPC1), brometo de cetilpiridínio (CPBr,) Triton X-100, cloreto de metildodecilbenziltrimetilamônio, brometo de cetildimetiletilamõnio e brometo de laurilisoquinolínio. A Mn-Pc foi solúvel em soluções aquosas de Brij-35 e Triton X-100. Em função de sua interação com surfatantes a Mg-Pc é classificada como corante catiônico e a Mn-Pc como corante aniônico. O corante comercial quinóide Oil Blue A [1,4-di(isopropilarnina)-antraquinona - 9,10 foi solubilizado à 25°C em DMF, DMSO, DMA, monoclorobenzeno, benzeno, tolueno, piridina, metanol, etanol, propanol-1, propanol-2, butanol-1 e octanol-1. Foi também solubilizado em soluções aquosas de surfatantes, tais como sódio lauril-sulfato (NaLS), cloreto de cetiltrimetilamônio (CTAB), brometo de cetildimetiletilamônio, Triton X-100, cloreto de cetilpiridínio (CPCl), Brij-35, cloreto de rnetildodecilbenziltrimetilamônio e brometo de laurilisoquinolínio. Em função de suas interações com os solventes o corante é um indicador ácido-básico pouco sensível e em função de sua interação com surfatantes é um corante catiônico. 0s resultados experimentais apresentam importância teórica e prática considerando sistemas que envolvem armazenamento e transferência de energia, compostos porfirínicos, fotossíntese, fotocondutores, coletores solares, semi-condutores e processos de embelezamento e proteção de superficies de vários materiais.
Resumo:
Foi estudada uma bacteriocina produzida por uma linhagem de B. cereus 8A, isolado de solo da região Sul do Brasil. Na primeira etapa de estudo determinaram-se as condições básicas de produção de bacteriocina com amplo espectro de ação denominada de Cereína 8A. Observou-se que durante a fase estacionária ocorre o máximo da sua produção, iniciando sua síntese no final da fase exponencial. As condições de maior produção foram a 30º C, agitação e contínua e numa faixa de pH de 7,0-8,5. A bacteriocina bruta inibiu várias bactérias indicadoras, como Listeria monocytogenes, Clostridium perfringens e Bacillus cereus. O teste de termoestabilidade mostrou a perda de atividade quando submetida a uma temperatura a partir de 87º C. Verificou-se a resistência da bacteriocina bruta frente à tripsina e papaína, mas não frente à proteinase K e pronase E. B. cereus e L. monocytogenes foram utilizadas como bactérias indicadoras para a determinação do modo de ação, após a determinação da dose bactericida de 200 UA mL-1 e 400 UA mL-1 respectivamente. A Cereína 8A demonstrou uma ação inibidora em culturas de Escherichia coli e Salmonella Enteritidis, quando tratadas com EDTA. A atividade esporicida foi observada contra esporos de B. cereus após tratamento com 400 UA ml -1. A análise da biomassa de L. monocytogenes e B. cereus após tratamento com a Cereína 8A, através da espectrofotometria de infravermelho determinou alteração no perfil, correspondente à fração dos ácidos graxos da membrana celular bacteriana. A substância peptídica foi separada por meio da precipitação com sulfato de amônio, extração com 1-butanol e aplicação em coluna de cromatografia por troca iônica tipo Q-Sepharose. A Cereína 8A purificada mostrou maior sensibilidade a proteases e ao calor e um peso molecular de aproximadamente 26 kDa. O espectro ultravioleta foi típico de um polipeptídeo e o espectro de infravermelho indica presença de grupamentos NH, acil e ligações peptídicas na sua estrutura. Uma hipótese do mecanismo de ação seria a desestruturação da membrana celular pela abertura de poros.