923 resultados para BOUND ENTANGLEMENT
Resumo:
String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.
Resumo:
The linearization of the Drucker-Prager yield criterion associated with an axisymmetric problem has been achieved by simulating a sphere with the truncated icosahedron with 32 faces and 60 vertices. On this basis, a numerical formulation has been proposed for solving an axisymmetric stability problem with the usage of the lower-bound limit analysis, finite elements, and linear optimization. To compare the results, the linearization of the Mohr-Coulomb yield criterion, by replacing the three cones with interior polyhedron, as proposed earlier by Pastor and Turgeman for an axisymmetric problem, has also been implemented. The two formulations have been applied for determining the collapse loads for a circular footing resting on a cohesive-friction material with nonzero unit weight. The computational results are found to be quite convincing. (C) 2013 American Society of Civil Engineers.
Resumo:
We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena 1] have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.
Resumo:
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the timetime component of the Brown-York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean actionmethods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription.
Resumo:
Generalizing a result (the case k = 1) due to M. A. Perles, we show that any polytopal upper bound sphere of odd dimension 2k + 1 belongs to the generalized Walkup class K-k(2k + 1), i.e., all its vertex links are k-stacked spheres. This is surprising since it is far from obvious that the vertex links of polytopal upper bound spheres should have any special combinatorial structure. It has been conjectured that for d not equal 2k + 1, all (k + 1)-neighborly members of the class K-k(d) are tight. The result of this paper shows that the hypothesis d not equal 2k + 1 is essential for every value of k >= 1.
Resumo:
Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighborhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1-dimensional (1 + 1d) conformal field theories (CFTs) at finite temperature whose gravity dual is Banados-Teitelboim-Zanelli (BTZ) black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement entropy which can be computed independently in the field theory.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
We investigate constraints imposed by entanglement on gravity in the context of holography. First, by demanding that relative entropy is positive and using the Ryu-Takayanagi entropy functional, we find certain constraints at a nonlinear level for the dual gravity. Second, by considering Gauss-Bonnet gravity, we show that for a class of small perturbations around the vacuum state, the positivity of the two point function of the field theory stress tensor guarantees the positivity of the relative entropy. Further, if we impose that the entangling surface closes off smoothly in the bulk interior, we find restrictions on the coupling constant in Gauss-Bonnet gravity. We also give an example of an anisotropic excited state in an unstable phase with broken conformal invariance which leads to a negative relative entropy.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
The influence of the flow rule on the bearing capacity of strip foundations placed on sand was investigated using a new kinematic approach of upper-bound limit analysis. The method of stress characteristics was first used to find the mechanism of the failure and to compute the stress field by using the Mohr-Coulomb yield criterion. Once the failure mechanism had been established, the kinematics of the plastic deformation was established, based on the requirements of the upper-bound limit theorem. Both associated and nonassociated plastic flows were considered, and the bearing capacity was obtained by equating the rate of external plastic work to the rate of the internal energy dissipation for both smooth and rough base foundations. The results obtained from the analysis were compared with those available from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential mu for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in mu in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, R) x SL(3, R) Chern-Simons theory. Our result suggests that the order mu(2) correction to the entanglement entropy may be universal for W-algebra CFTs with spin-three chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS(3).
Resumo:
We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.
Resumo:
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.
Resumo:
In arXiv:1310.5713 1] and arXiv:1310.6659 2] a formula was proposed as the entanglement entropy functional for a general higher-derivative theory of gravity, whose lagrangian consists of terms containing contractions of the Riemann tensor. In this paper, we carry out some tests of this proposal. First, we find the surface equation of motion for general four-derivative gravity theory by minimizing the holographic entanglement entropy functional resulting from this proposed formula. Then we calculate the surface equation for the same theory using the generalized gravitational entropy method of arXiv:1304.4926 3]. We find that the two do not match in their entirety. We also construct the holographic entropy functional for quasi-topological gravity, which is a six-derivative gravity theory. We find that this functional gives the correct universal terms. However, as in the R-2 case, the generalized gravitational entropy method applied to this theory does not give exactly the surface equation of motion coming from minimizing the entropy functional.