988 resultados para BORON-NITRIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen is considered one of the best energy sources. However, the lack of effective, stable, and safe storage materials has severely prevented its practical application. Strong effort has been made to try new nanostructured materials as new storage materials. In this study, oxygen-doped boron nitride (BN) nanosheets with 2-6 atomic layers, synthesized by a facile sol-gel method, show a storage capacity of 5.7wt% under 5MPa at room temperature, which is the highest hydrogen storage ever reported for any BN materials. Importantly, 89% of the stored hydrogen can be released when the hydrogen pressure is reduced to ambient conditions. Furthermore, the BN nanosheets exhibit an excellent storage cycling stability due to the stable two-dimensional nanostructure. The first principles calculations reveal that the high hydrogen storage mainly origins from the oxygen-doping of the BN nanosheets with increased adsorption energies of H2 on BN by 20-80% over pure BN sheets at the different coverage. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phonon properties of boron nitride nanotubes (BNNTs) were investigated using Raman spectroscopy at different temperatures and new sp3- bonded BN vibrations were identified. The Raman peak of the E2g mode of BNNTs is found to be downshifted and broadened compared to that of hexagonal BN at the same temperature. By increasing the temperature, the energy of the E2g mode and the sp3-bonding mode are downshifted, with the temperature coefficients being -0.010 and -0.069cm-1/K, respectively. We attribute this downshifting to anharmonic effects as well as the elongation of the B-N bond in BNNT structures with increasing temperature. © 2014 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanosheets (BNNSs), so-called “white graphene”, have recently received increasing attention, both theoretically and experimentally. Although many synthetic procedures have been proposed for the synthesis of BNNSs, finding a simple, solvent-less, catalyst-free, and large-scale production route is still a challenge. Here, a facile, solvent-less, low cost, and high yield process is developed, in which mechanical solid-state exfoliation allows scalable production of crumple BNNSs from commercial BN powders with a high surface area. Importantly, these BNNSs show unprecedentedly high adsorption of proteins described by various adsorption isotherms and kinetics models. In addition, the saturated BNNSs exhibit excellent recyclability, and maintain a high sorption capacity even after five cycles through simply regeneration process of heating in air. This easy recyclability route further demonstrates the great potential of BNNSs for water cleaning application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective oil/water separation and removal of organic molecules from water are of worldwide importance for water source protection. Multifunctional sorbent materials with excellent sorption capacity, stability, and recyclability properties need to be developed. Here, flexible and multifunctional polymer/porous boron nitride nanosheets (BNNSs) membranes with high water permeability, exhibiting high effectiveness and stability in the purification of simulated wastewater tainted with either oil/water emulsion or organic molecules, are reported. Remarkably, the flexible nature of these porous membranes enables simplicity of operation for water remediation processing and ease of post-processing collection. The composite membrane also displays a remarkably high permeability of 8 × 104 L μm m-2 h-1 bar-1, roughly three orders of magnitude higher than pure polymer, and excellent filter efficiencies for the pharmaceuticals ciprofloxacin, chlortetracycline, and carbamazepine (up to 14.2 L g-1 of BNNSs in the composite membrane for a concentration of 10 mg L-1 ciprofloxacin) and the dye methylene blue (up to 9.3 L g-1 of BNNSs in the composite membrane at a concentration of 30 mg L-1). Exhausted membranes can be readily rejuvenated by simple washing with retention of their high-performance characteristics. The results demonstrate the potential efficacy and practicality of these membranes for water cleaning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manufacturing of aerogels and membranes from hexagonal boron nitride (h-BN) is much more difficult than from graphene or graphene oxides because of the poor dispersibility of h-BN in water, which limits its exfoliation and preparation of colloidal solutions. Here, a simple, one-step mechano-chemical process to exfoliate and functionalize h-BN into highly water-dispersible, few-layer h-BN containing amino groups is presented. The colloidal solutions of few-layer h-BN can have unprecedentedly high concentrations, up to 30 mg ml(-1), and are stable for up to several months. They can be used to produce ultralight aerogels with a density of 1.4 mg cm(-3), which is ∼1,500 times less than bulk h-BN, and freestanding membranes simply by cryodrying and filtration, respectively. The material shows strong blue light emission under ultraviolet excitation, in both dispersed and dry state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) have been studied as a field emission material due to their unique and excellent properties such as high oxidation resistance and negative electron affinity. However, field emission properties of BNNT field emitters were rarely reported until now because it is difficult to synthesize high purity BNNTs and fabricate stable BNNT field emitters. Here, we report high field emission properties from BNNT field emitters fabricated on a tungsten rod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pristine boron nitride nanotubes have a large direct band gap around 5 eV. This band gap can be engineered by doping. We investigate electronic structure of the doped hexagonal boron nitride (5,5) nanotubes using the linearized augmented cylindrical wave method. In particular, this work focuses on systematical study of the band gap and the density of states around the Fermi-level when the nanotubes are doped by intrinsic impurities of two substitutional boron atoms in a super cell and a comparative analysis of the relative stability of three structures studied here. This corresponds to 3.3% of impurity concentration. We calculate 29 configurations of the nanotubes with different positions of the intrinsic impurities in the nanotube. The band gap and density of states around the Fermi level show strong dependence on the relative positions of the impurity atoms. The two defect sub bands called D(B) appear in the band gap of the pristine nanotube. The doped nanotubes possess p-type semiconductor properties with the band gap of 1.3-1.9 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) are structurally similar to carbon nanotubes (CNTs), but exhibit completely different physical and chemical properties. Thus, BNNTs with various interesting properties may be complementary to CNTs and provide an alternative perspective to be useful in different applications. However, synthesis of high quality of BNNTs is still challenging. Hence, the major goals of this research work focus on the fundamental study of synthesis, characterizations, functionalization, and explorations of potential applications. In this work, we have established a new growth vapor trapping (GVT) approach to produce high quality and quantity BNNTs on a Si substrate, by using a conventional tube furnace. This chemical vapor deposition (CVD) approach was conducted at a growth temperature of 1200 °C. As compared to other known approaches, our GVT technique is much simpler in experimental setup and requires relatively lower growth temperatures. The as-grown BNNTs are fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Energy Filtered Mapping, Raman spectroscopy, Fourier Transform Infra Red spectroscopy (FTIR), UV-Visible (UV-vis) absorption spectroscopy, etc. Following this success, the growth of BNNTs is now as convenient as growing CNTs and ZnO nanowires. Some important parameters have been identified to produce high-quality BNNTs on Si substrates. Furthermore, we have identified a series of effective catalysts for patterned growth of BNNTs at desirable or pre-defined locations. This catalytic CVD technique is achieved based on our finding that MgO, Ni or Fe are the good catalysts for the growth of BNNTs. The success of patterned growth not only explains the role of catalysts in the formation of BNNTs, this technique will also become technologically important for future device fabrication of BNNTs. Following our success in controlled growth of BNNTs on substrates, we have discovered the superhydrophobic behavior of these partially vertically aligned BNNTs. Since BNNTs are chemically inert, resistive to oxidation up to ~1000°C, and transparent to UV-visible light, our discovery suggests that BNNTs could be useful as self-cleaning, insulating and protective coatings under rigorous chemical and thermal conditions. We have also established various approaches to functionalize BNNTs with polymeric molecules and carbon coatings. First, we showed that BNNTs can be functionalized by mPEG-DSPE (Polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a bio-compatible polymer that helps disperse and dissolve BNNTs in water solution. Furthermore, well-dispersed BNNTs in water can be cut from its original length of >10µm to(>20hrs). This success is an essential step to implement BNNTs in biomedical applications. On the other hand, we have also succeeded to functionalize BNNTs with various conjugated polymers. This success enables the dispersion of BNNTs in organic solvents instead of water. Our approaches are useful for applications of BNNTs in high-strength composites. In addition, we have also functionalized BNNTs with carbon decoration. This was performed by introducing methane (CH4) gas into the growth process of BNNT. Graphitic carbon coatings can be deposited on the side wall of BNNTs with thicknesses ranging from 2 to 5 nm. This success can modulate the conductivity of pure BNNTs from insulating to weakly electrically conductive. Finally, efforts were devoted to explore the application of the wide bandgap BNNTs in solar-blind deep UV (DUV) photo-detectors. We found that photoelectric current generated by the DUV light was dominated in the microelectrodes of our devices. The contribution of photocurrent from BNNTs is not significant if there is any. Implication from these preliminary experiments and potential future work are discussed.