677 resultados para BLEACHING
Resumo:
The purpose of this study was to evaluate the effects of five home bleaching products containing 15-16% carbamide peroxide on the microhardness of microhybrid composite resin Z-250 (3M/Espe). A total of 72 specimens were fabricated in cylindrical acrylic matrices (4 x 2 mm), filled with composite resin and photo-activated for 40 seconds. They were divided in 6 study groups (n = 12), according to the bleaching product: Review (SS White), Magic Bleaching (Vigodent), Opalescence (Ultradent), Whiteness Perfect (FGM), Claridex (Biodinâmica), and a control group (not bleached). Specimens were exposed to 1 cc of bleaching gel for 6 hours daily for 2 weeks. The control group specimens were kept in artificial saliva throughout this time. All the specimens were then analyzed in a microhardness tester. Knoop hardness measurements were performed, and the results were submitted to parametric statistical analysis (analysis of variance and Tukey's test). Mean Knoop values and standard deviation were: baseline, 68.52a (4.28); control, 63.42b (7.16); Whiteness Perfect, 57.57c (1.81); Magic Bleaching, 57.22c (3.84); Opalescence, 57.03cd (4.00); Claridex, 53.64de (3.33); Review 51.45e (2.82). Identical letters mean statistical equality according to Tukey's test at the 5% significance level. The products significantly decreased Z-250 (3M/Espe) microhardness.
Resumo:
Aim: To evaluate the effect of photochemical activation of hydrogen peroxide (H2O2) bleaching gel with different wavelengths. Methods: In the study, 80 bovine incisors were used, which were stained in 25% soluble coffee and divided in 4 groups. The initial color was measured with the Easy Shade spectrophotometer by CIE Lab. An experimental 35% H2O2 bleaching gel was used, either with or without the presence of titanium dioxide (TiO2) pigment, associated with two light sources: G1 - Transparent Gel (TG) and no activation; G2 - Gel with TiO2 and activation with blue LED (l=470nm)\laser (Easy Bleach) appliance; G3 - Gel with TiO2 and activation with ultraviolet (l=345nm - UV); G4 - TG and activation with UV. Three applications of the gels were made for 10 min, and in each, 3 activations of 3 min, with interval of 30 s between them. The coloration was evaluated again and the variation in color perception (DE) was calculated. The data were submitted to one-way ANOVA and Tukey's test at 5% significance level. Results: There were significant differences between G1 and G4. The greatest E value was observed in G4 (13.37). There was no statistically significant difference (p>0.05) between the groups 2, 3 and 4. Conclusions: The presence of TiO2 particules in the bleaching gel did not interfere at the bleaching results.
Resumo:
This study examined the effect of 10% and 16% carbamide peroxide bleaching agents on the surface microhardness of micro-particulate feldspathic ceramics (VM7 and VM13, Vita Zahnfabrik). Forty specimens (8-mm diameter, 2-mm thickness) were divided into four groups (n=10): GI-VM7 + 10% Whiteness, G2-VM7 + 16% Whiteness, G3-VM13 + 10% and G4-VM13 + 16% Whiteness. The home-use bleaching agents were applied for 8 hours on 15 days, and the specimens were stored in distilled water at 37 degrees C. The Vickers hardness number (HV) was determined for each specimen. Data were analyzed by the Wilcoxon and Mann-Whitney tests (p < 0.05). The microhardness values before exposure were: g1-433 (57); g2-486 (22); g3-509 (28); g4-518 (24), and after exposure: G1-349 (32); G2-496 (95); G3-519 (38); G4-502 (81). G2 exhibited a higher and significant difference than GI in VM7 groups, and the effect of bleaching concentration was shown to be significant by the Mann-Whitney test. And for VM13, both the Wilcoxon and Mann-Whitney tests showed no significant differences. When using 10% carbamide peroxide, the microhardness of VM7 ceramic was affected, and there were no effect on the microhardness between VM7 and VM13 ceramics when 16% carbamide peroxide was used.
Resumo:
The aim of this study was to assess the effect of bleaching agents (10% and 16% carbamide peroxide) on the roughness of two dental ceramics in vitro, and to analyze the surface by scanning electronic microscopy (SEM). Two bleaching agents (10% and 16%/Whiteness, FGM Gel) and two microparticle feldspathic ceramics (Vita VM7 and Vita VM13) were used. Forty disks of Vita VM7 and Vita VM13 ceramic were manufactured, measuring 4 mm in diameter and 4 mm high, in accordance with the manufacturers' recommendations, and were divided into 4 groups (n = 10): (1) VM7 + Whiteness 10%; (2) VM7 + Whiteness 16%; (3) VM13 + Whiteness 10%; (4) VM13 + Whiteness 16%. The bleaching agent was applied for 8 hours a day for 15 days and during the intervals the test specimens were stored in distilled water at 37 degrees C. The roughness (Ra) of the test specimens was evaluated before and after exposure to the bleaching agents using a laser roughness meter and the topographic description was analyzed by SEM. The statistical analysis of roughness data showed significant differences in the VM7 groups, using paired t-test, p = 0.05 (VM7 + Whiteness 10%: p = 0.002; VM7 + Whiteness 16%: p = 0.001) and two-sample t-test (VM7 p = 0.047), and no significant difference was found among VM13 groups. The qualitative SEM analysis showed different degrees of surface changes. The results suggest that the roughness of the tested ceramic surfaces increased after exposure to the bleaching agents.
Resumo:
This article presents the enamel microabrasion protocol for removing intrinsic white stains of hard texture on the enamel surface, using a 37% phosphoric acid/pumice mixture associated with a carbamide peroxide-based bleaching agent in custom-made mouth trays. We observed that these clinical procedures were safe and effective, and solved our patient's esthetic problem. © 2010 Nova Science Publishers, Inc.
Resumo:
Objectives: This study aimed to measure pH changes during 14 days intracoronal bleaching with hydrogen peroxide/sodium perborate and carbamide peroxide/sodium perborate. Materials and methods: Twenty patients presenting endodontically treated central maxillary incisors with color alterations were divided in two groups (n = 10): Group CP + SP: 37% carbamide peroxide + sodium perborate paste; Group HP + SP: 30% hydrogen peroxide + sodium perborate paste. The pH values were measured using a digital microprocessor at different times: Baseline, 2, 7 and 14 days. Data were analyzed with two-way ANOVA followed by Tukey's test (α = 0.05). Results: ANOVA showed p < 0.00 which indicated significant difference between the groups. The mean values (± sd) and the results of the Tukey's test were: HP + SP/14 days-7.98 (±0.58)a; HP + SP/7 days-8.59 (±0.18)b; HP + SP/2 days-8.83 (±0.32)bc; HP + SP/Baseline-8.83 (±0.01)bc; CP + SP/Baseline-8.89 (±0.01)bc; CP + SP/14 days-9.11 (±0.58)cd; CP + SP/7 days-9.54 (±0.16)de; CP + SP/2 days-9.66 (±0.08) de. The group HP + SP resulted in significantly lower pH values compared with group CP + SP. Conclusion: It can be concluded that both associations showed alkaline pH values; however, there was significant reduction in the pH values of the 30% hydrogen peroxide associated with sodium perborate after 14 days. Clinical Significance: The association of hydrogen peroxide and carbamide peroxide with sodium perborate paste presented alkaline characteristics during the 14-day evaluated period. Thus, regarding pH changes, both associations can be considered safe as intracoronal bleaching agents.
Resumo:
Aim: This in vitro study evaluated the effect of calcium hydroxide on pH changes of the external medium after intracoronal bleaching. Materials and methods: A total of 50 extracted human premolars were prepared and filled with gutta-percha and endodontic sealer. The teeth were randomly divided into five groups according to the bleaching agents employed: (a) Sterile cotton pellet with distilled water (control group); (b) sodium perborate and distilled water; (c) sodium perborate and 10% carbamide peroxide; (d) sodium perborate and 35% hydrogen peroxide; (e) 35% hydrogen peroxide. The teeth were stored in vials containing distilled water and the pH values of the medium surrounding the teeth were analyzed. After 7-day storage, the bleaching agent was removed and replaced by calcium hydroxide, and the distilled water was changed, in which the teeth were kept stored for further 14 days. Measurement of pH of the external medium (distilled water) was performed 7 days after insertion of the bleaching agents, immediately, 7 and 14 days after insertion of the calcium hydroxide. Data were submitted to statistical analysis by the two-way ANOVA and Tukey,s test. Results: There were pH changes of the external medium at 7-day period after bleaching procedures. These results confirmed the diffusion of bleaching agents to the external medium. Conclusion: Calcium hydroxide increased the external medium pH and was effective for pH alkalinization after intracoronal bleaching. Clinical significance: Intracoronal bleaching of endodontically treated teeth may cause cervical root resorption. A possible explanation for this process is the passage of bleaching agents to the periodontal tissues yielding an inflammatory process. In an attempt to keep the neutrality of the periodontal pH, the calcium hydroxide has been recommended.Results of this study showed that this material should be always used after intracoronal bleaching.
Resumo:
The following is a clinical case report of a patient whose chief complaint was the presence of generalized spacing in the maxillary anterior segment following orthodontic treatment. After meticulous clinical analyses and discussions of the clinical procedures to be adopted, dental bleaching was performed in both arches with 10% hydrogen peroxide (Opalescence Trèswhite Supreme 10% Hydrogen Peroxide - Ultradent Products, Inc., South Jordan, USA) after the conclusion and stabilization of orthodontic treatment. Then, the orthodontic appliance was removed and the diastemas in the maxillary anterior teeth were closed with Amelogen Plus (Ultradent Products, Inc., South Jordan, USA) resin composite. It was observed that the association of orthodontic, bleaching, and restorative procedures was capable of restoring dental shape, function, and esthetics, allowing the patient to smile without hesitation.
Resumo:
The aim of this study was to evaluate effect of bleaching agents on sound enamel (SE) and enamel with early artificial caries lesions (CL) using confocal laser scanning microscopy (CLSM). Eighty blocks (4 × 5 × 5 mm) of bovine enamel were used and half of them were submitted to a pH cycling model to induce CL. Eight experimental groups were obtained from the treatments and mineralization level of the enamel (SE or CL) (n=10). SE groups: G1 - unbleached (control); G2 - 4% hydrogen peroxide (4 HP); G3 - 4 HP containing 0.05% Ca (Ca); G4 - 7.5% hydrogen peroxide (7.5 HP) containing amorphous calcium phosphate (ACP). CL groups: G5 - unbleached; G6 - 4 HP; G7 - 4 HP containing Ca; G8 - 7.5 HP ACP. G2, G3, G6, G7 were treated with the bleaching agents for 8 h/day during 14 days, while G4 and G8 were exposed to the bleaching agents for 30 min twice a day during 14 days. The enamel blocks were stained with 0.1 mM rhodamine B solution and the demineralization was quantified using fluorescence intensity detected by CLSM. Data were analyzed using ANOVA and Fisher's tests (α=0.05). For the SE groups, the bleaching treatments increased significantly the demineralization area when compared with the unbleached group. In the CL groups, no statistically significant difference was observed (p>0.05). The addition of ACP or Ca in the composition of the whitening products did not overcome the effects caused by bleaching treatments on SE and neither was able to promote remineralization of CL.
Resumo:
The aim of this study was to evaluate the effect of tooth bleaching with 10% carbamide peroxide (CP) or 35% hydrogen peroxide (HP), with or without quartz-tungsten-halogen light or hybrid source LED/infrared laser exposition on the occurrence duration, intensity and location of tooth sensitivity Forty patients were selected and randomly divided into four groups: GI--home bleaching with CP for 4 hours a day, over the course of 3 weeks; GII--three sessions of HP with three 10-minute applications at each session and no light source; GIII--the same procedure as GII with quartz-tungsten-halogen light irradiation; GIV--the same procedure as GII with LED/laser light irradiation. The evaluation included an appointment with each patient before and after each HP bleaching session or each weekly CP bleaching and 7, 30 and 180 days after the end of treatment. The Kruskal-Wallis test revealed that the duration and intensity of post-treatment sensitivity were significantly higher for HP than for CP (p< 0.05), and symptoms were located predominantly in anterior teeth. All bleaching methods generated sensitivity, which was more frequent in anterior teeth. However, treatment with CP generated lower sensitivity than treatment with HP independently of the light sources.
Resumo:
It is becoming more common for patients to look for cosmetic procedures in dental offices. The search for lost or desired esthetics by patients is increasingly frequent and the professional must be able to meet this demand. To do this, dentists not only need to return the tooth back to its normal functioning state but also promote esthetic excellence. In this context, the association of cosmetic procedures, such as teeth whitening and restorative procedures, such as direct adhesive restorations is very common. The composite resins employed nowadays allow the reproduction of various optical properties of natural teeth. With these composite resins, it is possible to reproduce features such as translucency, opacity and specific features of the dental element, to bring back the esthetic harmony of the smile. This article reports a clinical case demonstrating the placement, in a stratified manner, of composite resins in bleached teeth, as well as the reproduction of optical and natural aspects of the teeth. In order to achieve esthetic and functional success of the restored procedure, it is important to be familiar with the new techniques and new materials in the marketand above all, we must know when and where to use them.
Resumo:
This in vitro study evaluated the effect of 35 hydrogen peroxide (HP) bleaching gel modified or not by the addition of calcium and fluoride on enamel susceptibility to erosion. Bovine enamel samples (3 mm in diameter) were divided into four groups (n = 15) according to the bleaching agent: control-without bleaching (C); 35 hydrogen peroxide (HP); 35 HP with the addition of 2 calcium gluconate (HP + Ca); 35 HP with the addition of 0.6 sodium fluoride (HP + F). The bleaching gels were applied on the enamel surface for 40 min, and the specimens were subjected to erosive challenge with Sprite Zero and remineralization with artificial saliva for 5 days. Enamel wear was assessed using profilometry. The data were analyzed by ANOVA/ Tukey's test (P 0.05). There were significant differences among the groups (P = 0.009). The most enamel wear was seen for C (3.37 ± 0.80 μm), followed by HP (2.89 ± 0.98 μm) and HP + F (2.72 ± 0.64 μm). HP + Ca (2.31 ± 0.92 μm) was the only group able to significantly reduce enamel erosion compared to C. The application of HP bleaching agent did not increase the enamel susceptibility to erosion. However, the addition of calcium gluconate to the HP gel resulted in reduced susceptibility of the enamel to erosion. © 2012 Alessandra B. Borges et al.
Resumo:
Objectives: This study aimed to evaluate and correlate the efficacy and cytotoxicity of a 35 % hydrogen peroxide (HP) bleaching gel after different application times on dental enamel. Materials and methods: Enamel/dentin disks in artificial pulp chambers were placed in wells containing culture medium. The following groups were formed: G1, control (no bleaching); G2 and G3, three or one 15-min bleaching applications, respectively; and G4 and G5, three or one 5-min bleaching applications, respectively. Extracts (culture medium with bleaching gel components) were applied for 60 min on cultured odontoblast-like MDPC-23 cells. Cell metabolism (methyl tetrazolium assay) (Kruskal-Wallis/Mann-Whitney; α = 5 %) and cell morphology (scanning electron microscopy) were analyzed immediately after the bleaching procedures and the trans-enamel and trans-dentinal HP diffusion quantified (one-way analysis of variance/Tukey's test; α = 5 %). The alkaline phosphatase (ALP) activity was evaluated 24 h after the contact time of the extracts with the cells (Kruskal-Wallis/Mann-Whitney; α = 5 %). Tooth color was analyzed before and 24 h after bleaching using a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system (Kruskal-Wallis/Mann-Whitney; α = 0.05). Results: Significant difference (p < 0.05) in cell metabolism occurred only between G1 (control, 100 %) and G2 (60.6 %). A significant decrease (p < 0.05) in ALP activity was observed between G2, G3, and G4 in comparison with G1. Alterations on cell morphology were observed in all bleached groups. The highest values of HP diffusion and color alterations were observed for G2, with significant difference among all experimental groups (p < 0.05). G3 and G4 presented intermediate color change and HP diffusion values with no statistically significant differences between them (p > 0.05). The lowest amount of HP diffusion was observed in G5 (p < 0.05), which also exhibited no significant color alteration compared to the control group (p > 0.05). Conclusions: HP diffusion through dental tissues and its cytotoxic effects were proportional to the contact time of the bleaching gel with enamel. However, shorter bleaching times reduced bleaching efficacy. Clinical relevance: Shortening the in-office tooth bleaching time could be an alternative to minimize the cytotoxic effects of this clinical procedure to pulp tissue. However, the reduced time of bleaching agent application on enamel may not provide adequate esthetic outcome. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Aim: To evaluate the effectiveness of ultrasonic activation of bleaching agents during ex vivo internal bleaching. Methodology: Fifty canine human teeth were artificially stained, root filled and divided into five groups (n = 10) that received SP - sodium perborate plus deionized water (control group), CP - 37% carbamide peroxide gel, CPUS - 37% carbamide peroxide gel plus ultrasonic application, HP - 35% hydrogen peroxide gel or HPUS - 35% hydrogen peroxide gel plus ultrasonic application. In groups CP and HP, the bleaching agent was left inside the pulp chamber for three applications of 10 min. In groups CPUS and HPUS, the same process was performed, but ultrasonic vibration was applied to the bleaching agent by an alloy tip for 30 s, with 30 s intervals. Two sessions were performed. The colour was measured initially and after each session by an intraoral dental spectrophotometer. The variation (Δ) of the colour parameters based on the CIELab system L*, a* and b*, and the colour alteration ΔE* were calculated after first and second section. Data were analysed by one-way anova and Tukey's test. Results: There was no significant difference amongst groups for ΔL*, Δa* and ΔE*, but there was a significant difference for Δb* in the first and second sessions (P = 0.0006 and 0.0016, respectively). After the first session, Δb* was significantly greater for groups HP and HPUS, without a significant difference between them. For the second session, group HPUS had the greatest Δb* values, but they were similar to groups HP and SP; group CP had the lowest values, which were similar to groups CPUS and SP. Conclusion: Ultrasonic activation of bleaching agents during ex vivo internal bleaching was no more effective than conventional internal bleaching procedures, without activation. © 2012 International Endodontic Journal.