960 resultados para BIS(4-PYRIDYL)DISULFIDE-MODIFIED GOLD ELECTRODE
Resumo:
We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
The use of rotating ring–disk electrodes as generator-collector systems has so far been limited to the detection of Faradaic currents at the ring. As opposed to other generator-collector configurations, non-Faradaic detection has not yet been carried out with rotating ring–disk electrodes. In this study, a.c. perturbation based detection for measurement of the ring impedance is introduced. By using a conducting polymer-modified disk electrode in combination with a bare gold ring as a model, it is shown that the measured ring capacitance correlates with the polarization of the polymer film, most probably due to counter-ion exchange. A method of calculating the ring capacitance based on a small-signal sinusoid perturbation is described and the most important instrumental limitations are identified.
Resumo:
A saddle shaped tetracluster porphyrin species containing four [Ru(3)O(OAc)(6)(py)(2)](+) clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H(2)(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl) porphyrin analogue H(2)(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H(2)(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant pi-electronic coupling, in contrast with the less hindered H(2)(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO(2) films, involving the porphyrin excitation around 450 nm. However, only in the H(2)(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes.
Resumo:
Early reports stated that Au was a catalyst of choice for the BOR because it would yield a near complete faradaic efficiency. However, it has recently been suggested that gold could yield to some extent the heterogeneous hydrolysis of BH(4)(-),therefore lowering the electron count per BH(4)(-), especially at low potential. Actually, the blur will exist regarding the BOR mechanism on Au as long as no physical proof regarding the reaction intermediates is not put forward. In that frame, in situ physical techniques like FTIR exhibit some interest to study the BOR. Consequently, in situ infrared reflectance spectroscopy measurements (SPAIRS technique) have been performed in 1 M NaOH/1 M NaBH(4) on a gold electrode with the aim to detect the intermediate species. We monitored several bands in B-H ((nu) over bar similar to 1180,1080 and 972 cm(-1)) and B-O bond regions ((nu) over bar =1325 and similar to 1425cm(-1)), which appear sequentially as a function of the electrode polarization. These absorption bands are assigned to BH(3), BH(2) and BO(2)(-) species. At the light of the experimental results, possible initial elementary steps of the BOR on gold electrode have been proposed and discussed according to the relevant literature data.
Resumo:
Background & aim: Many disease outbreaks of food origin are caused by foods prepared in Food Service and Nutrition Units of hospitals, affecting hospitalized patients who, in most cases, are immunocompromised and therefore at a higher risk of severe worsening of their clinical status. The aim of this study was to determine the variations in temperature and the time-temperature factor of hospital diets. Methods: The time and temperature for the preparation of 4 diets of modified consistency were determined on 5 nonconsecutive days in a hospital Diet and Nutrition Unit at the end of preparation and during the maintenance period, portioning and distribution at 3 sites, i.e., the first, the middle and the last to receive the diets. Results and discussion: All foods reached an adequate temperature at the end of cooking, but temperature varied significantly from the maintenance period to the final distribution, characterizing critical periods for microorganism proliferation. During holding, temperatures that presented a risk were reached by 16.7% of the meats and 59% of the salads of the general diet, by 16.7% of the garnishes in the bland diet and by 20% of the meats and garnishes in the viscous diet. The same occurred at the end of distribution for 100% of the hot samples and of the salads and for 61% of the desserts. None of the preparations remained at risk temperature for a time exceeding that established by law. Conclusion: The exposure to inadequate temperature did not last long enough to pose risks to the patient.
Resumo:
Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.
Resumo:
Despite the importance of the 4,4'-dithiodipyridine as an electrode modifier on the protein electrochemical studies and as a remarkable bridged-ligand on conducting electronic density in binuclear mixed valence complexes, there is no data available in the literature concerning acid-base behavior of this compound. Aiming to afford such information we undertook the ionization equilibrium study of this ligand. Although two acid species, DTDPH+ and DTDPH2+ have been detected in solution, only the diacid-form was possible to be isolated as a perclorate salt DTDPH2(ClO4)2. The ionization constants for the two step equilibrium processes (pKa1=2.70 and pKa2=4.80) were determined by using the spectrophotometric technique and aqueous solutions of CF3COONa, mu=0,1 mol.L-1 .
Resumo:
It was investigated Au(I)-sulfite baths containing formaldehyde. As a result, high stability was achieved for baths containing formaldehyde concentration close to 10 mL L-1 with a lifetime superior to 600 days. On the other hand, cyclic voltammograms indicated that the increase of formaldehyde concentration in the bath promotes decreasing of the maximum cathodic current, so that, if the formaldehyde concentration is high, the surface areal concentration of gold will be low. Also, the lowest surface roughness was obtained for 10 mL L-1 of formaldehyde.
Resumo:
Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).
Resumo:
We report on experiments of spin filtering through ultrathin single-crystal layers of the insulating and ferromagnetic oxide BiMnO3 (BMO). The spin polarization of the electrons tunneling from a gold electrode through BMO is analyzed with a counterelectrode of the half-metallic oxide La2/3Sr1/3MnO3 (LSMO). At 3 K we find a 50% change of the tunnel resistances according to whether the magnetizations of BMO and LSMO are parallel or opposite. This effect corresponds to a spin-filtering efficiency of up to 22%. Our results thus show the potential of complex ferromagnetic insulating oxides for spin filtering and injection.
Resumo:
Among organic materials, spirobifluorene derivatives represent a very attractive class of materials for electronic devices. These compounds have high melting points, glass transitions temperatures and morphological stability, which makes these materials suitable for organic electronic applications. In addition, some of spirobifluorenes can form porous supramolecular associations with significant volumes available for the inclusion of guests. These molecular associations based on the spirobifluorenes are noteworthy because they are purely molecular analogues of zeolites and other microporous solids, with potential applications in separation, catalysis, sensing and other areas.
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
Two new hexa-coordinated mononuclear copper(II) complexes of two ligands L-1 and L-2 containing NSSN donor sets formulated as [Cu(L)(H2O)(2)](NO3)(2) [1a, L = 1,2-bis(2-pyridylmethylthio)ethane (L-1), 1b L = 1,3-bis(2-pyridyl-methylthio)propane (L-2)] were synthesized and characterized by physico-chemical and spectroscopic methods. In 1a the single crystal X-ray crystallography analysis showed a distorted octahedral geometry about copper(II) ion. The crystal packing evidences pairs of complexes arranged about a center of symmetry and connected through a H-bond occurring between aquo ligands and nitrate anions. On reaction with chloride and pseudohalides (N-3(-) and SCN-), in acetonitrile at ambient temperature. complexes 1 changed to monocationic penta-coordinated mononuclear copper(H) species formulated as [Cu(L)(Cl)]NO3 (2), [Cu(L)(N-3)]NO3 (3). and [Cu(L)(SCN)]NO3 (4). These copper(II) complexes have been isolated in pure form from the reaction mixtures and characterized by physico-chemical and spectroscopic tools. The solid-state structure of 2a, established by X-ray crystallography, shows a trigonal bipyramidal geometry about the metal ion with a trigonality index (tau) of 0.561. (C) 2009 Elsevier B.V. All rights reserved.