961 resultados para BIOMASS BURNING AEROSOLS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomass consumption and carbon release rates during the process of forest clearing by fire in five test plots are presented and discussed. The experiments were conducted at the Caiabi Farm near the town of Alta Floresta, state of Mato Grosso, Brazil, in five square plots of 1 ha each designated A, B, C, D, and E, with different locations and timing of fire. Plot A was located in the interface with a pasture, with three edges bordering on the forest, and was cut and burned in 1997. Plots B,C, D, and E were located inside the forest. Plot B was cut and burned in 1997. Plot C was inside a deforested 9-ha area, which was cut and burned in 1998. Plot D was inside a deforested 4-ha area, which was cut in 1998 and burned in 1999. Plot E was inside a deforested 4-ha area which was cut and burned in 1999. Biomass consumption was 22.7%, 19.5%, 47.5%, 61.5% and 41.8%, for A, B, C, D, and E, respectively. The effects of an extended curing period and of increasing the deforested area surrounding the plots could be clearly observed. The consumption for areas cut and burned during the same year, tended toward a value of nearly 50% when presented as a function of the total area burned. The aboveground biomass of the test site and the amount of carbon before the fire were 496 Mg ha-1 and 138 Mg ha-1, respectively. Considering that the biomass that remains unburned keeps about the same average carbon content of fresh biomass, which is supported by the fact that the unburned material consists mainly of large logs and considering the value of 50% for consumption, the amount of carbon released to the atmosphere as gases was 69 Mg ha-1. The amounts of CO2 and CO released to the atmosphere by the burning process were then estimated as 228 Mg ha-1 and 15.9 Mg ha-1, respectively. Observations on fire propagation and general features of the slash burnings in the test areas complete the paper. Copyright 2001 by the American Geophysical Union.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brazil has an important role in the biomass burning, with the detection of approximately 100,000 burning spots in a single year (2007). Most of these spots occur in the southern part of the Amazon basin during the dry season (from August to november) and these emissions reach the southeast of the country, a highly populated region and with serious urban air pollution problems. With the growing demand on biofuels, sugarcane is considerably expanding in the state of São Paulo, being a strong contributor to the bad air quality in this region. In the state of São Paulo, the main land use are pasture and sugarcane crop, that covers around 50% and 10% of the total area, respectively. Despite the aerosol from sugarcane burning having reduced atmospheric residence time, from a few days to some weeks, they might get together with those aerosol which spread over long distances (hundreds to thousands of kilometers). In the period of June through February 2010 a LIDAR observation campaign was carried in the state of São Paulo, Brazil, in order to observe and characterize optically the aerosols from two distinct sources, namely, sugar cane biomass burning and industrial emissions. For this purpose 2 LIDAR systems were available, one mobile and the other placed in a laboratory, both working in the visible (532 nm) and additionally the mobile system had a Raman channel available (607 nm). Also this campaign counted with a SODAR, a meteorological RADAR specially set up to detect aerosol echoes and gas-particle analyzers. To guarantee a good regional coverage 4 distinct sites were available to deploy the instruments, 2 in the near field of biomass burning activities (Rio Claro and Bauru), one for industrial emissions (Cubatão) and others from urban sources (São Paulo). The whole campaign provide the equivalent of 30 days of measurements which allowed us to get aerosol optical properties such as backscattering/extinction coefficients, scatter and LIDAR ratios, those were used to correlate with air quality and meteorological indicators and quantities. In this paper we should focus on the preliminary results of the Raman LIDAR system and its derived aerosol optical quantities. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The central and western portion of the S̃ao Paulo State has large areas of sugar cane plantations, and due to the growing demand for biofuels, the production is increasing every year. During the harvest period some plantation areas are burnt a few hours before the manual cutting, causing significant quantities of biomass burning aerosol to be injected into the atmosphere. During August 2010, a field campaign has been carried out in Ourinhos, situated in the south-western region of S̃ao Paulo State. A 2-channel Raman Lidar system and two meteorological S-Band Doppler Radars are used to indentify and quantify the biomass burning plumes. In addiction, CALIPSO Satellite observations were used to compare the aerosol optical properties detected in that region with those retrieved by Raman Lidar system. Although the campaign yielded 30 days of measurements, this paper will be focusing only one case study, when aerosols released from nearby sugar cane fires were detected by the Lidar system during a CALIPSO overpass. The meteorological radar, installed in Bauru, approximately 110 km northeast from the experimental site, had recorded echoes (dense smoke comprising aerosols) from several fires occurring close to the Raman Lidar system, which also detected an intense load of aerosol in the atmosphere. HYSPLIT model forward trajectories presented a strong indication that both instruments have measured the same air masss parcels, corroborated with the Lidar Ratio values from the 532 nm elastic and 607 nm Raman N2 channel analyses and data retrieved from CALIPSO have indicated the predominance of aerosol from biomass burning sources. © 2011 SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the energy alternatives that provide utility, flexibility, cleanliness and economy is biomass, such as forest waste (wood) and agricultural (sugarcane bagasse, rice husks, coffee pods, etc.). However, with its increasing supply and use grows also the concern of industries to invest in monitoring and control of emissions into the atmosphere, because during biomass burning are emitted as exhaust gases, fine particles known as particulates, which greatly contribute to the triggering of serious health problems to humans, in addition to the environmental damage. With that, this work aimed to conduct a monitoring of particulate and gaseous pollutants emissions to the atmosphere from the burning of various types of biomass used by industries. The equipment used for sampling were the optical monitor DataRAM 4 and the Unigas3000 + gas sampler. The results showed that biomass coffee pods presented the greatest concentration of particulates (485119 μg m-3) with particle diameters between 0.0602 μm and 0.3502 μm, i.e. the most ultrafine particles, harmful to human health and the environment. The largest emissions of CO and NOx were observed, respectively, for the coffee pods (3500 ppm) and for the rice husk (48 ppm). As for the superior calorific value (PCS), the best of fuel, with higher PCS, was the Eucalyptus grandis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM2.5) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM2.5 samples, employing gravimetry to determine PM2.5 mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 mu g/m(3), respectively. In Sao Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM2.5 mass. We used receptor models to identify distinct source-related PM2.5 fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM2.5 mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-a-vis health care costs.