972 resultados para BIOLOGICAL NETWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the basic aspects of some neural networks is their attempt to approximate as much as possible their biological counterparts. The goal is to achieve a simple and robust network, easy to understand and able of simulating the human brain at a computational level. Recently a third generation of neural networks (NN) [1], called Spiking Neural Networks(SNN) was appeared. This new kind of networks use the time of a electrical pulse, or spike, to encode the information. In the first and second generation of NN analog values are used in the communication between neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On a mobile ad-hoc network environment, where the resources are scarce, the knowledge about the network's link state is essential to optimize the routing procedures. This paper presents a study about different pheromone evaluation models and how they react to possible changes in traffic rate. Observing how the pheromone value on a link changes, it could be possible to identify certain patterns which can indicate the path status. For this study, the behavior of the Ant System evaluation model was compared with a Temporal Active Pheromone model (a biological approach) and a Progressive Pheromone Reduction model with and without a maximum pheromone limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This special section contains papers addressing various aspects associated with the issue Of Cultured neural networks. These are networks, that are formed through the monitored growth of biological neural tissue. In keeping with the aims of the International Journal of Adaptive Control and Signal Processing, the key focus of these papers is to took at particular aspects of signal processing in terms of both stimulating such a network and in assigning intent to signals collected as network outputs. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic analysis workshop 15 (GAW15) problem 1 contained baseline expression levels of 8793 genes in immortalised B cells from 194 individuals in 14 Centre d’Etude du Polymorphisme Humane (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article looks at the use of cultured neural networks as the decision-making mechanism of a control system. In this case biological neurons are grown and trained to act as an artificial intelligence engine. Such research has immediate medical implications as well as enormous potential in computing and robotics. An experimental system involving closed-loop control of a mobile robot by a culture of neurons has been successfully created and is described here. This article gives a brief overview of the problem area and ongoing research. Questions are asked as to where this will lead in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal depression is associated with increased risk for offspring mood and anxiety disorders. One possible impact of maternal depression during offspring development is on the emotional autobiographical memory system. We investigated the neural mechanisms of emotional autobiographical memory in adult offspring of mothers with postnatal depression (N = 16) compared to controls (N = 21). During fMRI, recordings of participants describing one pleasant and one unpleasant situation with their mother and with a companion, were used as prompts to re-live the situations. Compared to controls we predicted the PND offspring would show: greater activation in medial and posterior brain regions implicated in autobiographical memory and rumination; and decreased activation in lateral prefrontal cortex and decreased connectivity between lateral prefrontal and posterior regions, reflecting reduced control of autobiographical recall. For negative situations, we found no group differences. For positive situations with their mothers, PND offspring showed higher activation than controls in left lateral prefrontal cortex, right frontal pole, cingulate cortex and precuneus, and lower connectivity of right middle frontal gyrus, left middle temporal gyrus, thalamus and lingual gyrus with the posterior cingulate. Our results are consistent with adult offspring of PND mothers having less efficient prefrontal regulation of personally relevant pleasant autobiographical memories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)