984 resultados para BH3 Interacting Domain Death Agonist Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue virus (DENV) is the causative agent of dengue fever (DF), a mosquito-borne illness endemic to tropical and subtropical regions. There is currently no effective drug or vaccine formulation for the prevention of DF and its more severe forms, i.e., dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There are two generally available experimental models for the study of DENV pathogenicity as well as the evaluation of potential vaccine candidates. The first model consists of non-human primates, which do not develop symptoms but rather a transient viremia. Second, mouse-adapted virus strains or immunocompromised mouse lineages are utilized, which display some of the pathological features of the infection observed in humans but may not be relevant to the results with regard to the wild-type original virus strains or mouse lineages. In this study, we describe a genetic and pathological study of a DENV2 clinical isolate, named JHA1, which is naturally capable of infecting and killing Balb/c mice and reproduces some of the symptoms observed in DENV-infected subjects. Sequence analyses demonstrated that the JHA1 isolate belongs to the American genotype group and carries genetic markers previously associated with neurovirulence in mouse-adapted virus strains. The JHA1 strain was lethal to immunocompetent mice following intracranial (i.c.) inoculation with a LD50 of approximately 50 PFU. Mice infected with the JHA1 strain lost weight and exhibited general tissue damage and hematological disturbances, with similarity to those symptoms observed in infected humans. In addition, it was demonstrated that the JHA1 strain shares immunological determinants with the DENV2 NGC reference strain, as evaluated by cross-reactivity of anti-envelope glycoprotein (domain III) antibodies. The present results indicate that the JHA1 isolate may be a useful tool in the study of DENV pathogenicity and will help in the evaluation of anti-DENV vaccine formulations as well as potential therapeutic approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine discovery from conventional culture-based methods to high-throughput genome-based approaches for the development of recombinant protein-based vaccines against pathogenic bacteria. Besides reaching its main goal of identifying new vaccine candidates, this new procedure produced also a huge amount of molecular knowledge related to them. In the present work, we explored this knowledge in a species-independent way and we performed a systematic in silico molecular analysis of more than 100 protective antigens, looking at their sequence similarity, domain composition and protein architecture in order to identify possible common molecular features. This meta-analysis revealed that, beside a low sequence similarity, most of the known bacterial protective antigens shared structural/functional Pfam domains as well as specific protein architectures. Based on this, we formulated the hypothesis that the occurrence of these molecular signatures can be predictive of possible protective properties of other proteins in different bacterial species. We tested this hypothesis in Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to provide a second proof of the concept for our approach, we used Staphyloccus aureus as a second pathogen and identified five new protective antigens. This new knowledge-driven selection process, named MetaVaccinology, represents the first in silico vaccine discovery tool based on conserved and predictive molecular and structural features of bacterial protective antigens and not dependent upon the prediction of their sub-cellular localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Clostridium chauvoei is the causative agent of blackleg, a wide spread serious infection of cattle and sheep with high mortality. In this study we have analyzed the sialidase activity of the NanA protein of C. chauvoei and cloned the sialidase gene nanA. Sialidase is encoded as a precursor protein of 722 amino acids with a 26 amino acid signal peptide. The mature sialidase has a calculated molecular mass of 81 kDa and contains the carbohydrate binding module 32 (CBM32, or F5/8 type C domain), the sialic acid binding module CBM40 and the enzymatically active sialidase domain found in all pro- and eukaryotic sialidases. Sialidase activity does not require the CBM32 domain. The NanA protein is secreted by C. chauvoei as a dimer. The nanA gene was found to be conserved and sialidase activity was found in C. chauvoei strains isolated over a period of 50 years from various geographical locations. Antiserum directed against a recombinant 40 kDa peptide containing CBM40 and part of the enzymatically active domain of NanA neutralized the secreted sialidase activity of all C. chauvoei strains tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALX4 (aristaless-like homeobox 4) gene encodes a paired-type homeodomain transcriptional activator and plays a major role in anterior-posterior pattern formation during limb development. Here, the cloning, genomic structure and expression of the bovine ortholog of the ALX4 gene are reported. The bovine ALX4 gene consists of four exons and is located on BTA15q28-->q29 in a region syntenic to HSA11p11.2. The transcribed ALX4 mRNA encodes a 397-amino-acid protein showing a paired-type homeodomain and a C-terminal stretch of amino acids known as the OAR- or aristaless domain. The predicted protein shares 92.5% identity to human and mouse ALX4 proteins and all three species share almost complete identity in the conserved domains. ALX4 expression was detected by reverse transcriptase polymerase chain reaction in bovine fetal limb bones. The ALX4 gene was evaluated as a candidate gene for bovine syndactyly which has been mapped on the telomeric region of cattle chromosome 15. Sequencing of the four exons with flanking sequences of the bovine ALX4 gene from a panel of 14 affected animals belonging to German Holstein, German Fleckvieh and crossbreds, and 27 unaffected individuals from German Holstein revealed five silent SNPs within the coding region out of eleven SNPs in total. Four SNPs were polymorphic in the affected animals, but in comparison to the genotyped unaffected individuals the genotype distribution showed no evidence for an association to the phenotype. Therefore our data indicate that the ALX4 gene can probably be excluded as candidate gene for bovine syndactyly in the examined animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone requires a wide variety of nutrients to develop normally and to maintain itself after growth. Most important--in the sense that bony abnormalities are associated with their deficiencies--are protein, calcium, phosphorus, vitamin D, C and K, zinc, manganese and copper. The nutrients most likely to be deficient in citizens of industrialized countries are calcium and vitamin D. In this review of the current literature about nutritional aspects of osteoporosis, we have focused on factors influencing calcium requirement: the principal interacting nutrients are sodium, protein, caffeine, fiber, oxalate, phytate, and the acid/alkaline ash character of the overall diet. Fiber and caffeine decrease calcium absorption from the gut and typically exert relatively minor effects, while sodium, protein and the acid/alkaline balance of the diet increase urinary excretion of calcium and are of much greater significance for the calcium homeostasis. Alkali buffers, whether vegetables or fruits reverse this urinary calcium loss. As long as accompanied by adequate calcium intake, protein-rich diet is not deleterious to bone: a calcium-to-protein ratio of 20:1 (mg calcium/g protein) is recommended. Whether a nutrition-based therapeutic approach to osteoporosis is feasible in the near future is yet unclear: at least there are some recent promising data from in-vitro as well as from rat studies showing that extracts taken from various vegetables, mainly from the onion family inhibit bone resorption in a dose-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent investigations of the tumor microenvironment have shown that many tumors are infiltrated by inflammatory and lymphocytic cells. Increasing evidence suggests that the number, type and location of these tumor-infiltrating lymphocytes in primary tumors has prognostic value, and this has led to the development of an 'immunoscore. As well as providing useful prognostic information, the immunoscore concept also has the potential to help predict response to treatment, thereby improving decision- making with regard to choice of therapy. This predictive aspect of the tumor microenvironment forms the basis for the concept of immunoprofiling, which can be described as 'using an individual's immune system signature (or profile) to predict that patient's response to therapy' The immunoprofile of an individual can be genetically determined or tumor-induced (and therefore dynamic). Ipilimumab is the first in a series of immunomodulating antibodies and has been shown to be associated with improved overall survival in patients with advanced melanoma. Other immunotherapies in development include anti-programmed death 1 protein (nivolumab), anti-PD-ligand 1, anti-CD137 (urelumab), and anti-OX40. Biomarkers that can be used as predictive factors for these treatments have not yet been clinically validated. However, there is already evidence that the tumor microenvironment can have a predictive role, with clinical activity of ipilimumab related to high baseline expression of the immune-related genes FoxP3 and indoleamine 2,3-dioxygenase and an increase in tumor-infiltrating lymphocytes. These biomarkers could represent the first potential proposal for an immunoprofiling panel in patients for whom anti-CTLA-4 therapy is being considered, although prospective data are required. In conclusion, the evaluation of systemic and local immunological biomarkers could offer useful prognostic information and facilitate clinical decision making. The challenge will be to identify the individual immunoprofile of each patient and the consequent choice of optimal therapy or combination of therapies to be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. METHODS Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. RESULTS miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. CONCLUSIONS We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5′ untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5′ untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.