998 resultados para BAND-GAP RENORMALIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature time-resolved photoluminescence spectroscopy is used to probe the dynamics of photoexcited carriers in single InP nanowires. At early times after pulsed excitation, the photoluminescence line shape displays a characteristic broadening, consistent with emission from a degenerate, high-density electron-hole plasma. As the electron-hole plasma cools and the carrier density decreases, the emission rapidly converges toward a relatively narrow band consistent with free exciton emission from the InP nanowire. The free excitons in these single InP nanowires exhibit recombination lifetimes closely approaching that measured in a high-quality epilayer, suggesting that in these InP nanowires, electrons and holes are relatively insensitive to surface states. This results in higher quantum efficiencies than other single-nanowire systems as well as significant state-filling and band gap renormalization, which is observed at high electron-hole carrier densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge build-up process in the emitter of a double-barrier resonant tunneling structure is studied by using photoluminescence spectroscopy. Clear evidence is obtained that the charge accumulation in the emitter keeps almost constant with bias voltages in the resonant regime, while it increases remarkably with bias voltages beyond resonant regime. The optical results are in good agreement with the electrical measurement. It is demonstrated that the band gap renormalization plays a certain rob in the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear current voltage characteristics of a point contact convey information about various excitations in the metal. We have made a poin~ contact study on a superconductor to see the band gap and on a normal metal to see Ihe transport characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a theoretical prediction of a new class of bulk and intrinsic quantum anomalous Hall (QAH) insulators LaX (X=Br, Cl, and I) via relativistic first-principles calculations. We find that these systems are innate long-ranged ferromagnets which, with the help of intrinsic spin-orbit coupling, become QAH insulators. A low-energy multiband tight-binding model is developed to understand the origin of the QAH effect. Finally, integer Chern number is obtained via Berry phase computation for each two-dimensional plane. These materials have the added benefit of a sizable band gap of as large as similar to 25 meV, with the flexibility of enhancing it to above 75 meV via strain engineering. The synthesis of LaX materials will provide the impurity-free single crystals and thin-film QAH insulators for versatile experiments and functionalities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cladding band structure of air-guiding photonic crystal fibers with high air-filling fraction is calculated in terms of fiber shape variation. The fundamental photonic band gap dependence on structure parameters, air-filling fraction and spacing, is also investigated. The numerical results show that the band gap edges shift toward longer wavelength as the air-filling fraction is increased, whereas the relative band gap width increases linearly. For a fixed air-filling fraction, the band gap edges with respect to spacing keep constant. With this method, the simulation results agree well with the reported data. © 2007 Elsevier B.V. All rights reserved.