1000 resultados para BAND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the performance and photophysics of a low band-gap diketopyrrolopyrrole-based copolymer used in bulk heterojunction devices in combination with PC71BM. We show that the short lifetime of photogenerated excitons in the polymer constitutes an obstacle towards device efficiency by limiting the diffusion range of the exciton to the donor-acceptor heterojunction. We employ ultrafast transient-probe and fluorescence spectroscopy techniques to examine the excited state loss channels inside the devices. We use the high boiling point solvent additive 1,8-diiodooctane (DIO) to study the photoexcited state losses in different blend morphologies. The solvent additive acts as a compatibiliser between the donor and the acceptor material and leads to smaller domain sizes, higher charge formation yields and increased device efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low-entropy state, a band insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model including fluctuations and augmented by a variational quantum Monte Carlo calculation of the ground state, we show that the superfluid state obtained has a high transition temperature of the order of the hopping energy. Our system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory realization of this model via an orthogonally shaken optical lattice bilayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the premise that electronic noise dominates mechanical noise in micromachined accelerometers, we present here a method to enhance the sensitivity and resolution at kHz bandwidth using mechanical amplification. This is achieved by means of a Displacement-amplifying Compliant Mechanism (DaCM) that is appended to the usual sensing element comprising a proof-mass and a suspension. Differential comb-drive arrangement is used for capacitive-sensing. The DaCM is designed to match the stiffness of the suspension so that there is substantial net amplification without compromising the bandwidth. A spring-mass-lever model is used to estimate the lumped parameters of the system. A DaCM-aided accelerometer and another without a DaCM-both occupying the same footprint-are compared to show that the former gives enhanced sensitivity: 8.7 nm/g vs. 1.4 nm/g displacement at the sensing-combs under static conditions. A prototype of the DaCM-aided micromachined acclerometer was fabricated using bulk-micromachining. It was tested at the die-level and then packaged on a printed circuit board with an off-the-shelf integrated chip for measuring change in capacitance. Under dynamic conditions, the measured amplification factor at the output of the DaCM was observed to be about 11 times larger than the displacement of the proof-mass and thus validating the concept of enhancing the sensitivity of accelerometers using mechanical amplifiers. The measured first in-plane natural frequency of the fabricated accelerometer was 6.25 kHz. The packaged accelerometer with the DaCM was measured to have 26.7 mV/g sensitivity at 40 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-acceptor (D-A) conjugated polymers have attracted a good deal of attention in recent years. In D-A systems, the introduction of electron withdrawing groups reduces E-g by lowering the LUMO levels whereas, the introduction of electron donating groups reduces E-g by raising the HOMO levels. Also, conjugated polymers with desired HOMO and LUMO energy levels could be obtained by the proper selection of donor and acceptor units. Because of this reason, D-A conjugated polymers are emerging as promising materials particularly for polymer light emitting diodes (PLEDs) and polymer solar cells (PSCs). We report the design and synthesis of four new narrow band gap donor-acceptor (D-A) conjugated polymers, PTCNN, PTCNF, PTCNV and PTCNO, containing electron donating 3,4-didodecyloxythiophene and electron accepting cyanovinylene units. The effects of further addition of electron donating and electron withdrawing groups to the repeating unit of a D-A conjugated polymer (PTCNN) on its optical and electrochemical properties are discussed. The studies revealed that the nature of D and A units as well as the extent of alternate D-A structure influences the optical and the electrochemical properties of the polymers. All the polymers are thermally stable up to a temperature of 300 degrees C under nitrogen atmosphere. The electrochemical studies revealed that the polymers possess low-lying HOMO energy levels and low-lying LUMO energy levels. In the UV-Vis absorption study, the polymer films displayed broad absorption in the wavelength region of 400-700 nm. The polymers exhibited low optical band gaps in the range 1.70 - 1.77 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new low band gap D-A structured conjugated polymers, PBDTTBI and PBDTBBT, based on 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole acceptor units with benzo1,2-b; 3,4-b']dithiophene as a donor unit have been designed and synthesized via a Stille coupling reaction. The incorporation of the benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole unit into PBDTBBT has significantly altered the optical and electrochemical properties of the polymer. The optical band gap estimated from the onset absorption edge is similar to 1.88 eV and similar to 1.1 eV, respectively for PBDTTBI and PBDTBBT. It is observed that PBDTBBT exhibited a deeper HOMO energy level (similar to 4.06 eV) with strong intramolecular charge transfer interactions. Bulk heterojunction solar cells fabricated with a configuration of ITO/PEDOT: PSS/PBDTBBT: PC71BM/Al exhibited a best power conversion efficiency of 0.67%, with a short circuit current density of 4.9 mA cm(-2), an open-circuit voltage of 0.54 V and a fill factor of 25%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces aband insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the gas sensing behavior of BiNbO4 nanopowder prepared by a low temperature simple solution-based method. Before the sensing behaviour study, the as-synthesized nanopowder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-diffuse reflectance spectroscopy, impedance analysis, and surface area measurement. The NH3 sensing behavior of BiNbO4 was then studied by temperature modulation (50-350 degrees C) as well as concentration modulation (20-140 ppm). At the optimum operating temperature of 325 degrees C, the sensitivity was measured to be 90%. The cross-sensitivity of as-synthesized BiNbO4 sensor was also investigated by assessing the sensing behavior toward other gases such as hydrogen sulphide (H2S), ethanol (C2H5OH), and liquid petroleum gas (LPG). Finally, selectivity of the sensing material toward NH3 was characterized by observing the sensor response with gas concentrations in the range 20-140 ppm. The response and recovery time for NH3 sensing at 120 ppm were about 16 s and about 17 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission loss (TL) of a simple expansion chamber (SEC) consists of periodic domes with sharp troughs. This limits practical application of the SEC in the variable-speed automobile exhaust systems. Three-fourths of the troughs of the SEC can be lifted by appropriate tuning of the extended inlet/outlet lengths. However, such mufflers suffer from high back pressure and generation of aerodynamic noise due to free shear layers at the area discontinuities. Therefore, a perforate bridge is made between the extended inlet and outlet. It is shown that the TL curve of a concentric tube resonator (CTR) can also be lifted in a similar way by proper tuning of the extended unperforated lengths. Differential lengths have to be used to correct the inlet/outlet lengths in order to account for the perforate inertance. The resonance peak frequencies calculated by means of the 1-D analysis are compared with those of the 3-D FEM, and appropriate differential lengths are calculated. It is shown how different geometric characteristics of the muffler and mean flow affect the differential lengths. A general correlation is obtained for the differential lengths by considering seven relevant geometric and environmental parameters in a comprehensive parametric study. The resulting expressions would help in design of extended-tube CTR for wide-band TL. (C) 2014 Institute of Noise Control Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new D-A structured conjugated polymer (PBDO-T-TDP) based on electron-rich benzo 1,2-b:4,5-b'] difuran (BDO) containing conjugated alkylthiophene side chains with an electron-deficient diketopyrrolopyrrole (DPP) derivative is designed and synthesized. The polymer shows a narrow band gap with broad UV-Visible absorption spectra, which is in contrast to that of the P3HT:PCBM binary blend. Furthermore, its energy levels can meet the energetic requirement of the cascaded energy levels of P3HT and PCBM. Therefore, PBDO-T-TDP is used as a sensitizer in P3HT: PCBM based BHJ solar cells and its effect on their photovoltaic properties was investigated by blending them together at various weight ratios. It is observed that the resulting ternary blend system exhibited a significant improvement in the device performance (similar to 3.10%) as compared with their binary ones (similar to 2.15%). Such an enhancement in the ternary blend system is ascribed to their balanced hole and electron mobility along with uniform distribution of PBDO-T-TDP in the blend system, as revealed by organic field effect transistors and AFM studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Al:ZnO/Cu2SnS3 semiconductor heterojunction was fabricated. The structural and optical properties of the semiconductor materials were studied. The band offset at the Al:ZnO/Cu2SnS3 heterojunction was studied using X-ray photoelectron spectroscopy technique. From the measurement of the core level energies and valence band maximum of the constituent elements, the valence band offset was calculated to be -1.1 +/- 0.24 eV and the conduction band offset was 0.9 +/- 0.34 eV. The band alignment at the heterojunction was found to be of type-I. The study of Al:ZnO/Cu2SnS3 heterojunction is useful for solar cell applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel design for the geometric configuration of honeycombs using a seamless combination of auxetic and conventional cores- elements with negative and positive Possion ratios respectively, has been presented. The proposed design has been shown to generate a superior band gap property while retaining all major advantages of a purely conventional or purely auxetic honeycomb structure. Seamless combination ensures that joint cardinality is also retained. Several configurations involving different degree of auxeticity and different proportions auxetic and conventional elements have been analyzed. It has been shown that the preferred configurations open up wide and clean band gap at a significantly lower frequency ranges compared to their pure counterparts. In view of existence of band gaps being desired feature for the phononic applications, reported results might be appealing. Use of such design may enable superior vibration control as well. Proposed configurations can be made isovolumic and iso-weight giving designers a fairer ground of applying such configurations without significantly changing size and weight criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal in the whisper activity detection (WAD) is to find the whispered speech segments in a given noisy recording of whispered speech. Since whispering lacks the periodic glottal excitation, it resembles an unvoiced speech. This noise-like nature of the whispered speech makes WAD a more challenging task compared to a typical voice activity detection (VAD) problem. In this paper, we propose a feature based on the long term variation of the logarithm of the short-time sub-band signal energy for WAD. We also propose an automatic sub-band selection algorithm to maximally discriminate noisy whisper from noise. Experiments with eight noise types in four different signal-to-noise ratio (SNR) conditions show that, for most of the noises, the performance of the proposed WAD scheme is significantly better than that of the existing VAD schemes and whisper detection schemes when used for WAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.